
The Whizard-JNI Package: A Java Interface to Whizard

M. Ronan∗
Lawrence Berkeley National Laboratory

University of California, Berkeley CA USA
(Dated: November 27, 2001)

The Whizard-JNI package is a stand-alone software system for setting up and running the Whizard
Monte Carlo program from within Java. Full Whizard functionality is provided through a simple
“straght-forward” interface to native FORTRAN 95 code. The package includes examples for run-
ning Whizard within a Java framework for Linear Collider detector (LCD) simulations. These LCD
examples use Whizard for event generation, execute the U.S. Fast Monte Carlo (FMC) detector
simulation and perform user analysis in Java and/or FORTRAN 95.

I. INTRODUCTION

Whizard is a generic Monte-Carlo generator for multi-particle processes at high-energy colliders [1], imple-
mented in FORTRAN 95. The Java Language Environment [2] offers the possibility of developing physics
analysis for the next generation of HEP facilities in a clean object-oriented methodology. A reliable Java
interface to Whizard would allow new physics and detector studies to take full advantage of Whizard.

The Whizard-JNI package [3] has been developed to provide a convenient general purpose Java interface to the
Whizard Monte Carlo system, following similar developments of a Pythia-JNI package [4]. Basic physics gener-
ation and fragmentation processing is provided through a Java Native Interface (JNI) to underlying Whizard
routines, such as integrate and generateEvent. Whizard can simply be run as a stand-alone application through
its Java interface. In a Java framework package, the generated events are accessed through a JNI interface to
the HEPEvt common block and passed to Java analysis modules. Provision has been made to run existing User
FORTRAN 95 code through a UserF90Analysis class and corresponding UserF90-JNI interface.

A Java software framework has been developed for Linear Collider detector (LCD) [5] simulations. In that
framework, the Java Analysis Studio (JAS) [6] provides a powerful environment for reading in existing Monte
Carlo event files and running LCD reconstruction and analysis applications. For unique or large statistics
physics and fast detector studies, specialized stand-alone applications can generate and analysis events saving
intermediate histograms and results for subsequent analysis. JAS can then be used to view histograms, analyze
intermediate results and prepare final presentations. A number of simple stand-alone Java analysis examples
for Linear Collider physics analysis and Fast Monte Carlo (FMC) detector simulations are discussed below.

II. INTERFACING TO WHIZARD

The Java Development Kit (JDK) [2] provides easy to use tools for constructing interfaces to native code
such as Whizard and the HEPEvt FORTRAN common block. The developer describes the Java signature
of underlying “native” methods with the required arguments and return variables. The JDK writes a header
file specifying how the interface should be implemented. A simple ANSI-C implementation is used to invoke
Whizard routines or to access HEPEvt event variables.

The hep.generator.whizard Java package contains a “straight-forward” interface to Whizard through sim-
ple interfacing methods. The Whizard Java class describes the signature of Whizard routines. A simple
implementation WhizardImp.c provides the interface from the Java language methods to the underlying
FORTRAN 95 routines, such as integrate and generateEvent. A standard GNU Makefile is used to compile
the Java classes, make the native interface definitions and compile the C implementations. Links to Whizard,
O’Mega and CERN object libraries are made in a shared object library that is loaded into the Java Virtual
Machine (VM). Whizard can then be executed from its Java main method or included in applications.

Useage:
To create the Whizard-JNI interface

Whizard whizard = new Whizard();

∗ronan@lbl.gov

E3063



2

To read in Whizard data files and integrate
whizard.integrate();

To generate an event
whizard.generateEvent();

A HEPEvt class, derived from the JAS [6] package, provides a Java interface to the HEPEvt FORTRAN
common block. An ANSI-C implementation HEPEvtImp.c is used to interface the Java methods to the
HEPEvt data structure viewed from C. Java native methods such as getNEVHEP() and getNHEP() return
the generated event number and number of particles, respectively. While methods such as getPHEP(i,j) return
double precision values for the four momenta of each particle. The HEPEvt-JNI is loaded in the Whizard shared
object library to allow access to the generated event quantities.

III. JAVA FRAMEWORK

A simple Java framework for data processing has been developed as part of the JAS [6] environment. This base
framework has been extended for Linear Collider detector (LCD) [5] simulations. In stand-alone Whizard-JNI
packages [3], the main program uses the base framework in generating Whizard events. The LCD simulation
and analysis framework is then used for Fast Monte Carlo detector simulation and user analysis.

A. Event generation

The hep.analysis package provides a basic Java simulation and analysis framework. A Job class has methods
for adding EventSource’s and EventAnalyzer’s to the processing stream. When the processors have been
loaded the Job executes a specified number of events, writing out StdHEP events if requested, and then saves
histograms and any other output at termination.

In simulations, a main program method creates an analysis job and then adds Whizard as the event source.
Various LCD simulation and analysis modules are then added as described below.

B. LCD Software (The hep.lcd Class Library)

The hep.lcd class library [5] provides an extensible Java framework for running sophisticated analyses such
as fast parameterized Monte Carlo (FastMC) simulation and full event reconstruction. The LCD simulation
system allows analysis of generator-level four vectors, FastMC quantities or space point data from the full
tracking package. Use of the Java Language Environment allows rapid development of analysis modules and
reconstruction algorithms with excellent through-put in processing. A suite of physics analysis tools, such as
histograming, event display and jet finding, enable users to build on proven code. The overall design emphasizes
flexibility and extensibility, typically providing multiple algorithms in following object-oriented design rules. The
framework can be used as a standalone or run inside Java Analysis Studio. Within the modular LCD design,
Driver objects receive the LCDEvent data from the Monte Carlo generator and execute a list of Processor’s.

The WhizardGenerator class in the hep.lcd.generator.whizard package provides a wrapper to the
Whizard Java interface described in Sec. II. It executes Whizard methods to generate each event and then
reads out the HEPEvt common block in forming a valid LCDEvent object.

The hep.lcd.mc.MCFast processor performs a simple parameterized Fast Monte detector simulation with
straight forward acceptance cuts on final state particles. Charged particle momentum resolution tables calcu-
lated for tracks at various momenta and angles are used for smearing the generated particle momenta. Simple
parameterized energy resolutions are used for photons and neutral hadrons.

Java analysis modules can simply be added to the LCD framework as described below. A UserF90-JNI is
available to fill ntuples for use in FORTRAN 95 analyses or to be written out for subsequent analysis.

IV. JAVA ANALYSIS EXAMPLES

In the event generation and analysis examples, a main GenWhizard class configures Whizard for e+e−→
W+W−/ ZZ event generation at 1 TeV. It creates a hep.analysis.Job adding Whizard as the event source.

E3063



3

FIG. 1: Comparison of the total number of reconstructed jets and the number of tagged jets (a), and jet-jet invariant
mass distributions for pairs of large-angle jets in the W / Z mass region (b) in 1 TeV e+e−→ W+W −/ ZZ events.

A simple analysis Driver executes a ShapeAnalysis process to determine the event Thrust axis and then
executes the Fast Monte Carlo simulation. The analysis Processor’s described below are then executed.

The WhizardEventAnalysis class gets the tracks and clusters from the simulated event, writes out the
quanties for the first few events and makes some simple histograms. The code and output histograms are
available from the web release directory [3].

The WhizardJetAnalysis class uses tracks and clusters to find jets in simulated e+e−→ W+W−/ ZZ
events. Reconstructed jets are compared to partons and leptons from the Whizard event generation to identify
hadronic jets. Figure 1a shows a comparison of the total number of hadronic jets found and the number that
are tagged. The tagged jets provide a good reconstruction of the original parton direction and energy. The
difference being due to jets that are merged or mismeasured. Jet-jet invariant mass distributions for pairs of
large-angle jets in the W and Z mass region are shown in Fig. 1b. Also show are the mass distributions for jet
pairs recoiling against a reconstructed W or Z. The plot is indicative of the intrinsic W / Z separation that is
possible in the reconstruction of color neutral particles in e+e− collisions.

Acknowledgments

I’d like to thank Wolfgang Kilian and Thorsten Ohl for expressing interest in the Whizard-JNI development,
and Tim Barklow for setting up the FORTRAN 95 compiler and Whizard native libraries.

[1] Whizard V1.13, “A generic Monte-Carlo generator for multi-particle processes at high-energy colliders”, W. Kilian,
http://www-ttp.physik.uni-karlsruhe.de/Progdata/whizard.

[2] JDK1.1.8 and higher, Sun Microsystems, Inc., http://java.sun.com.
[3] M. Ronan, “Whizard Java Native Interface (JNI) Software”, http://www.lbl.gov/∼ronan/docs/Whizard-JNI.
[4] M. Ronan, “The Pythia-JNI Package: A Java Interface to Pythia” in these proceedings, and

http://www.lbl.gov/∼ronan/docs/Pythia-JNI.
[5] M. Ronan et al, “Java Analysis Studio and the hep.lcd Class Library”, International Workshop on Linear Colliders,

Sitges, Barcelona, Spain, 1999; G. Bower et al., “Java-based LCD Reconstruction and Analysis Tools”, International
Linear Collider Workshop, Fermilab, 2000; and N. Graf et al., “LCD Software Status”, in these proceedings.

[6] A.S. Johnson, Java Analysis Studio, http://jas.freehep.org/.

E3063


