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A fundamental understanding of quantum chromodynamics, particularly at the amplitude level, is
essential for progress in high energy physics. For example, the measurement and interpretation of
the basic parameters of the electroweak theory and CP violation depends on an understanding of
the dynamics and phase structure of exclusive B-meson decay amplitudes. In this review, I discuss a
number of ways in which the required hadron wavefunctions can be measured (such as two-photon
reactions and diffractive dissociation) or calculated from first principles. An important tool for
describing relativistic composite systems in quantum field theory is the light-front Fock expan-
sion, which encodes the properties of a hadrons in terms of a set of frame-independent n−particle
wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number
of remarkable advantages, including explicit unitarity, the absence of ghost degrees of freedom,
and the decoupling properties needed to prove factorization theorems in high momentum transfer
inclusive and exclusive reactions. Evolution in light-cone time allows the construction of an “event
amplitude generator" in which only non-ghost physical degrees of freedom and integration over
physical phase appear. The diffractive dissociation of a hadron at high energies, by either Coulomb
or Pomeron exchange, has a natural description in QCD as the materialization of the projectile’s
light-cone wavefunctions; in particular, the diffractive dissociation of a meson, baryon, or photon
into high transverse momentum jets measures the shape and other features of the projectile’s distri-
bution amplitude. Diffractive dissociation can thus test fundamental properties of QCD, including
color transparency and intrinsic charm. I also review recent work which shows that the structure
functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus
modifying their connection with the light-cone probability distributions. In particular, the shad-
owing of nuclear structure functions is due to destructive interference effects from leading-twist
diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions.

1. Introduction

Quantum chromodynamics is the bedrock of the Standard Model, providing a fundamental
description of hadron physics in terms of quark and gluon degrees of freedom. The theory has
been tested extensively, particularly in inclusive and exclusive processes involving collisions at
large momentum transfer where factorization theorems and the smallness of the QCD effective
coupling allow perturbative predictions. QCD is an extraordinarily complex and rich theory,
leading to many remarkable and novel physical phenomena. However, continued testing and
development of QCD, particularly at the amplitude level, is crucial for progress in high energy
physics. For example, the measurement and interpretation of the basic parameters of electroweak
theory and CP violation depends on an understanding of the dynamics and phase structure of
exclusive B-meson decays amplitudes and the contributing hadronic wavefunctions.

Despite its empirical successes, many fundamental questions about QCD have not been re-
solved. These include a fundamental understanding of hadronization and color confinement, the
behavior of the QCD coupling at small momenta, the problem of asymptotic n! growth of the
perturbation theory (renormalon phenomena), the nature of diffractive phenomena, a fundamen-
tal theory of the soft and hard aspects of the pomeron in high energy reactions, the origin of
shadowing and anti-shadowing in nuclear collisions, the apparent conflict between QCD vacuum
structure and the small size of the cosmological constant. There are also a number of empirical
puzzles, such as the anomalous size of the bb production cross section at hadron colliders, the
J/ψ → ρπ puzzle, the apparent small size of spin in the proton, the strong spin correlations in
large angle proton-proton elastic scattering, the momentum spectrum of J/ψ in B decays, the un-
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usual pattern of color transparency effects in quasi-elastic reactions, and the anomalous nuclear
dependence of nuclear structure functions at small momentum transfer.

2. Light-Front Wavefunctions

One of the important theoretical goals in QCD is a frame-independent, quantum-mechanical
representation of hadrons at the amplitude level capable of encoding multi-quark, hidden-
color and gluon momentum, helicity, and flavor correlations in the form of universal process-
independent hadron wavefunctions. Light-front quantization allows a unified relativistic wave-
function representation of non-perturbative hadron dynamics in QCD. Furthermore, it is possible
to measure the wavefunctions of a relativistic hadron by diffractively dissociating it into jets
whose momentum distribution is correlated with the valence quarks’ momenta [1, 2, 3, 4]. It is
particularly important to understand the shape of the gauge- and process-independent meson
and baryon valence-quark distribution amplitudes [5]φM(x,Q), andφB(xi,Q). These quantities
specify how a hadron shares its longitudinal momentum among its valence quarks; they control
virtually all exclusive processes involving a hard scale Q, including form factors, Compton scat-
tering and photoproduction at large momentum transfer, as well as the decay of a heavy hadron
into specific final states [6, 7].

In light-front quantization, one takes the light-cone time variable t+z/c as the evolution param-
eter instead of ordinary time t. (The ẑ direction is an arbitrary reference direction.) The method
is often called “light-front" quantization rather than “light-cone" quantization since the equation
x+ = τ = 0 defines a hyperplane corresponding to a light-front. The light-front fixes the initial
boundary conditions of a composite system as its constituents are intercepted by a light-wave
evaluated at a specific value of x+ = t + z/c. In contrast, determining an atomic wavefunction
at a given instant t = t0 requires measuring the simultaneous scattering of Z photons on the Z
electrons. An extensive review and guide to the light-front quantization literature can be found
in Ref. [8]. I will use here the notation Aµ = (A+, A−, A⊥), where A± = A0 ± Az and the metric
A · B = 1

2(A
+B− +A−B+)−A⊥ · B⊥.

It is convenient to define the invariant light-front Hamiltonian: HQCDLC = P+P− − �P2⊥ where

P± = P0 ± Pz. The operator P− = i ddτ generates light-cone time translations. The P+ and �P⊥
momentum operators are independent of the interactions, and thus are conserved at all orders.
The eigen-spectrum of HQCDLC in principle gives the entire mass squared spectrum of color-singlet
hadron states in QCD, together with their respective light-front wavefunctions. For example, the
proton state satisfies: HQCDLC |Ψp〉 = M2

p|Ψp〉. The projection of the proton’s eigensolution |Ψp〉 on

the color-singlet B = 1, Q = 1 eigenstates {|n〉} of the free Hamiltonian HQCDLC (g = 0) gives the
light-front Fock expansion: [9]

∣∣∣Ψp;P+, �P⊥, λ
〉
=

∑
n≥3,λi

∫
Πni=1

d2k⊥idxi√
xi16π3

16π3δ

1−
n∑
j
xj

δ(2)
 n∑
	

�k⊥	

 (1)

×
∣∣∣n;xiP+, xi �P⊥ + �k⊥i, λi

〉
ψn/p(xi, �k⊥i, λi) .

The light-front Fock wavefunctions ψn/H(xi, �k⊥i, λi) interpolate between the hadron H and its
quark and gluon degrees of freedom. The light-cone momentum fractions of the constituents,
xi = k+i /P+ with

∑n
i=1 xi = 1, and the transverse momenta �k⊥i with

∑n
i=1
�k⊥i = �0⊥ appear as

the momentum coordinates of the light-front Fock wavefunctions. A crucial feature is the frame-
independence of the light-front wavefunctions. The xi and �k⊥i are relative coordinates indepen-
dent of the hadron’s momentum Pµ . The actual physical transverse momenta are �p⊥i = xi �P⊥+�k⊥i.
The λi label the light-front spin Sz projections of the quarks and gluons along the z direction.
The physical gluon polarization vectors εµ(k, λ = ±1) are specified in light-cone gauge by the
conditions k · ε = 0, η · ε = ε+ = 0. Each light-front Fock wavefunction satisfies conservation of
the z projection of angular momentum: Jz =∑n

i=1 S
z
i +

∑n−1
j=1 l

z
j . The sum over Szi represents the

contribution of the intrinsic spins of the n Fock state constituents. The sum over orbital angular
momenta lzj = −i(k1

j
∂
∂k2
j
− k2

j
∂
∂k1
j
) derives from the n − 1 relative momenta. This excludes the
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contribution to the orbital angular momentum due to the motion of the center of mass, which is
not an intrinsic property of the hadron [10].

Light-cone wavefunctions represent the ensemble of states possible when the hadron is in-
tercepted by a light-front at fixed τ = t + z/c. The light-cone representation thus provide a
frame-independent, quantum-mechanical representation of the incoming hadron at the ampli-
tude level, capable of encoding its multi-quark, hidden-color and gluon momentum, helicity, and
flavor correlations in the form of universal process-independent hadron wavefunctions.

It is especially convenient to develop the light-front formalism in the light-cone gauge A+ =
A0 + Az = 0. In this gauge the A− field becomes a dependent degree of freedom, and it can be
eliminated from the gauge theory Hamiltonian, with the addition of a set of specific instantaneous
light-cone time interactions. In fact inQCD(1+1) theory, this instantaneous interaction provides
the confining linear x− interaction between quarks. In 3+ 1 dimensions, the transverse field A⊥
propagates massless spin-one gluon quanta with two polarization vectors [5] which satisfy both
the gauge condition ε+λ = 0 and the Lorentz condition k · ε = 0. Thus no extra condition on the
Hilbert space is required [11].

There are a number of other simplifications of the light-front formalism:

1. The light-front wavefunctions describe quanta which have positive energy, positive norm,
and physical polarization. The formalism is thus physical, and unitary. No ghosts fields
appear explicitly, even in non-Abelian theory. The wavefunctions are only functions of
three rather than four physical momentum variables: the light-front momentum fractions
xi and transverse momenta k⊥. The quarks and gluons each have two physical polarization
states. The Ward identities for vertex and wavefunction renormalization are simple for
these physical quanta.

2. The set of light-front wavefunctions provide a frame-independent, quantum-mechanical
description of hadrons at the amplitude level capable of encoding multi-quark and gluon
momentum, helicity, and flavor correlations in the form of universal process-independent
hadron wavefunctions. Matrix elements of spacelike currents such as the spacelike elec-
tromagnetic form factors have an exact representation in terms of simple overlaps of the
light-front wavefunctions in momentum space with the samexi and unchanged parton num-
ber [12, 13, 14]. In the case of timelike decays, such as those determined by semileptonic
B decay, one needs to include contributions in which the parton number ∆n = 2 [15]. The
leading-twist off-forward parton distributions measured in deeply virtual Compton scatter-
ing have a similar light-front wavefunction representation [16, 17].

3. The high x → 1 and high k⊥ limits of the hadron wavefunctions control processes and re-
actions in which the hadron wavefunctions are highly stressed. Such configurations involve
far-off-shell intermediate states and can be systematically treated in perturbation theory
[5, 18].

4. The leading-twist structure functions qi(x,Q) and g(x,Q)measured in deep inelastic scat-
tering can be computed from the absolute squares of the light-front wavefunctions, inte-
grated over the transverse momentum up to the resolution scale Q. All helicity distribu-
tions are thus encoded in terms of the light-front wavefunctions. The DGLAP evolution of
the structure functions can be derived from the high k⊥ properties of the light-front wave-
functions. Thus given the light-front wavefunctions, one can compute [5] all of the leading
twist helicity and transversity distributions measured in polarized deep inelastic lepton
scattering. For example, the helicity-specific quark distributions at resolution Λ correspond
to

qλq/Λp(x,Λ) =
∑
n,qa

∫ n∏
j=1

dxjd2k⊥j
16π3

∑
λi

|ψ(Λ)n/H(xi, �k⊥i, λi)|2 (2)

×16π3δ

1−
n∑
i
xi

δ(2)
 n∑
i

�k⊥i

δ(x − xq)δλ,λqΘ(Λ2 −M2
n) ,

where the sum is over all quarks qa which match the quantum numbers, light-front momen-
tum fraction x, and helicity of the struck quark. Similarly, the transversity distributions and
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off-diagonal helicity convolutions are defined as a density matrix of the light-front wave-
functions. This defines the LC factorization scheme [5] where the invariant mass squared
M2
n =

∑n
i=1 (k

2
⊥i +m2

i )/xi of the n partons of the light-front wavefunctions is limited to
M2
n < Λ2.

5. The distribution of spectator particles in the final state in the proton fragmentation region
in deep inelastic scattering at an electron-proton collider are encoded in the light-front
wavefunctions of the target proton. Conversely, the light-front wavefunctions can be used
to describe the coalescence of comoving quarks into final state hadrons.

6. The light-front wavefunctions also specify the multi-quark and gluon correlations of the
hadron. Despite the many sources of power-law corrections to the deep inelastic cross sec-
tion, certain types of dynamical contributions will stand out at largexbj since they arise from
compact, highly-correlated fluctuations of the proton wavefunction. In particular, there are
particularly interesting dynamical O(1/Q2) corrections which are due to the interference
of quark currents; i.e., contributions which involve leptons scattering amplitudes from two
different quarks of the target nucleon [19].

7. The higher Fock states of the light hadrons describe the sea quark structure of the deep
inelastic structure functions, including “intrinsic" strangeness and charm fluctuations spe-
cific to the hadron’s structure rather than gluon substructure [20, 21]. Ladder relations
connecting state of different particle number follow from the QCD equation of motion and
lead to Regge behavior of the quark and gluon distributions at x → 0 [22].

8. The gauge- and process-independent meson and baryon valence-quark distribution ampli-
tudes φM(x,Q), and φB(xi,Q) which control exclusive processes involving a hard scale Q,
including heavy quark decays, are given by the valence light-front Fock state wavefunctions
integrated over the transverse momentum up to the resolution scaleQ. The evolution equa-
tions for distribution amplitudes follow from the perturbative high transverse momentum
behavior of the light-front wavefunctions [9].

9. The line-integrals needed to defining distribution amplitudes and structure functions as
gauge invariant matrix elements of operator products vanish in light-front gauge.

10. Proofs of factorization theorems in hard exclusive and inclusive reactions are greatly sim-
plified since the propagating gluons in light-cone gauge couple only to transverse currents;
collinear divergences are thus automatically suppressed.

11. At high energies each light-front Fock state interacts distinctly; e.g., Fock states with small
particle number and small impact separation have small color dipole moments and can
traverse a nucleus with minimal interactions. This is the basis for the predictions for “color
transparency" in hard quasi-exclusive [23, 24] and diffractive reactions [2, 3, 4].

12. The Fock state wavefunctions of hadron can be resolved by a high energy diffractive inter-
action, producing forward jets with momenta which follow the light-front momenta of the
wavefunction [2, 3, 4].

13. The deuteron form factor at high Q2 is sensitive to wavefunction configurations where all
six quarks overlap within an impact separation b⊥i < O(1/Q). The leading power-law fall
off predicted by QCD is Fd(Q2) = f(αs(Q2))/(Q2)5, where, asymptotically, f(αs(Q2)) ∝
αs(Q2)5+2γ [25, 26]. In general, the six-quark wavefunction of a deuteron is a mixture of
five different color-singlet states. The dominant color configuration at large distances corre-
sponds to the usual proton-neutron bound state. However at small impact space separation,
all five Fock color-singlet components eventually evolve to a state with equal weight, i.e., the
deuteron wavefunction evolves to 80% “hidden color” [26]. The relatively large normaliza-
tion of the deuteron form factor observed at large Q2 hints at sizable hidden-color contri-
butions [27]. Hidden color components can also play a predominant role in the reaction
γd → J/ψpn at threshold if it is dominated by the multi-fusion process γgg → J/ψ [28].
Hard exclusive nuclear processes can also be analyzed in terms of “reduced amplitudes"
which remove the effects of nucleon substructure.
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3. Event Amplitude Generator

The light-cone formalism can provide the foundations for an “event amplitude generator" where
each quark and gluon final state is completely labelled in momenta, helicity, and phase. The basic
idea is to use the light-cone Hamiltonian P− to generate the T -matrix in light-cone time-ordered
perturbation theory in light-cone gauge. Loop integrals are integrations over the momenta of
physical quanta and physical phase space

∏
d2k⊥idk+i . The renormalized amplitudes can be

explicitly constructed by subtracting from the divergent loops amplitudes with nearly identical
integrands corresponding to the contribution of the relevant mass and coupling counter terms
(the “alternating denominator method") [29]. The natural renormalization scheme to use for defin-
ing the coupling in the event amplitude generator is a physical effective charge such as the pinch
scheme [30]. The argument of the coupling is unambiguous. The DLCQ boundary conditions
can be used to discretized phase space and limit the number of contributing intermediate states
without violating Lorentz invariance. Hadronization processes can be conceivably incorporated
by convolution with light-cone wavefunctions. Since one avoids dimensional regularization and
nonphysical ghost degrees of freedom, this method of generating events at the amplitude level
could be a very simple but powerful tool for simulating events both in QCD and the Standard
Model.

4. Other Theoretical Tools

In addition to the light-front Fock expansion, a number of other useful theoretical tools are
available to eliminate theoretical ambiguities in QCD predictions:

1. Conformal symmetry provides a template for QCD predictions [31], leading to relations
between observables which are present even in a theory which is not scale invariant. For
example, the natural representation of distribution amplitudes is in terms of an expansion
of orthogonal conformal functions multiplied by anomalous dimensions determined by QCD
evolution equations [32, 33, 34]. Thus an important guide in QCD analyses is to identify
the underlying conformal relations of QCD which are manifest if we drop quark masses and
effects due to the running of the QCD couplings. In fact, if QCD has an infrared fixed point
(vanishing of the Gell-Mann-Low function at low momenta), the theory will closely resemble
a scale-free conformally symmetric theory in many applications.

2. Commensurate scale relations [35, 36] are perturbative QCD predictions which relate observ-
able to observable at fixed relative scale, such as the “generalized Crewther relation" [37],
which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to
measurements of the e+e− annihilation cross section. Such relations have no renormaliza-
tion scale or scheme ambiguity. The coefficients in the perturbative series for commensurate
scale relations are identical to those of conformal QCD; thus no infrared renormalons are
present [31]. One can identify the required conformal coefficients at any finite order by ex-
panding the coefficients of the usual PQCD expansion around a formal infrared fixed point,
as in the Banks-Zak method [38]. All non-conformal effects are absorbed by fixing the ratio
of the respective momentum transfer and energy scales. In the case of fixed-point theories,
commensurate scale relations relate both the ratio of couplings and the ratio of scales as
the fixed point is approached [31].

3. αV and Skeleton Schemes. A physically natural scheme for defining the QCD coupling in
exclusive and other processes is the αV(Q2) scheme defined from the potential of static
heavy quarks. Heavy-quark lattice gauge theory can provide highly precise values for the
coupling. All vacuum polarization corrections due to fermion pairs are then automatically
and analytically incorporated into the Gell-Mann-Low function, thus avoiding the problem
of explicitly computing and resumming quark mass corrections related to the running of the
coupling [39]. The use of a finite effective charge such asαV as the expansion parameter also
provides a basis for regulating the infrared nonperturbative domain of the QCD coupling. A
similar coupling and scheme can be based on an assumed skeleton expansion of the theory
[30, 38].
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4. The Abelian Correspondence Principle. One can consider QCD predictions as analytic func-
tions of the number of colors NC and flavors NF . In particular, one can show at all orders of
perturbation theory that PQCD predictions reduce to those of an Abelian theory at NC → 0
with α̂ = CFαs and N̂F = 2NF/CF held fixed [40]. There is thus a deep connection between
QCD processes and their corresponding QED analogs.

5. Other Applications of Light-Front Wavefunctions

Exclusive semileptonic B-decay amplitudes such as B → A	ν can also be evaluated exactly in
the light-front formalism [15]. The time-like decay matrix elements require the computation of
the diagonal matrix element n → n where parton number is conserved, and the off-diagonal
n + 1 → n − 1 convolution where the current operator annihilates a qq′ pair in the initial B
wavefunction. This term is a consequence of the fact that the time-like decay q2 = (p	+pν)2 > 0
requires a positive light-front momentum fraction q+ > 0. Conversely for space-like currents, one
can choose q+ = 0, as in the Drell-Yan-West representation of the space-like electromagnetic form
factors. However, as can be seen from the explicit analysis of the form factor in a perturbative
model, the off-diagonal convolution can yield a nonzero q+/q+ limiting form as q+ → 0. This
extra term appears specifically in the case of “bad" currents such as J− in which the coupling to
qq fluctuations in the light-front wavefunctions are favored. In effect, the q+ → 0 limit generates
δ(x) contributions as residues of the n+ 1 → n− 1 contributions. The necessity for such “zero
mode" δ(x) terms was first noted by Chang, Root and Yan [41], Burkardt [42], and Ji and Choi
[43].

The off-diagonal n + 1 → n − 1 contributions give a new perspective for the physics of B-
decays. A semileptonic decay involves not only matrix elements where a quark changes flavor,
but also a contribution where the leptonic pair is created from the annihilation of a qq′ pair within
the Fock states of the initial B wavefunction. The semileptonic decay thus can occur from the
annihilation of a nonvalence quark-antiquark pair in the initial hadron. This feature will carry over
to exclusive hadronic B-decays, such as B0 → π−D+. In this case the pion can be produced from
the coalescence of a du pair emerging from the initial higher particle number Fock wavefunction
of the B. The D meson is then formed from the remaining quarks after the internal exchange of
a W boson.

In principle, a precise evaluation of the hadronic matrix elements needed for B-decays and
other exclusive electroweak decay amplitudes requires knowledge of all of the light-front Fock
wavefunctions of the initial and final state hadrons. In the case of model gauge theories such as
QCD(1+1) [44] or collinear QCD [45] in one-space and one-time dimensions, the complete evalu-
ation of the light-front wavefunction is possible for each baryon or meson bound-state using the
DLCQ method.

The virtual Compton scattering process dσ
dt (γ

∗p → γp) for large initial photon virtuality
q2 = −Q2 has extraordinary sensitivity to fundamental features of the proton’s structure. Even
though the final state photon is on-shell, the deeply virtual process probes the elementary quark
structure of the proton near the light cone as an effective local current. In contrast to deep
inelastic scattering, which measures only the absorptive part of the forward virtual Compton am-
plitude ImTγ∗p→γ∗p, deeply virtual Compton scattering allows the measurement of the phase
and spin structure of proton matrix elements for general momentum transfer squared t. In addi-
tion, the interference of the virtual Compton amplitude and Bethe-Heitler wide angle scattering
Bremsstrahlung amplitude where the photon is emitted from the lepton line leads to an electron-
positron asymmetry in the e±p → e±γp cross section which is proportional to the real part of the
Compton amplitude [46, 47, 48]. The deeply virtual Compton amplitude γ∗p → γp is related by
crossing to another important process γ∗γ → hadron pairs at fixed invariant mass which can be
measured in electron-photon collisions [49].

In the handbag approximation, the deeply virtual Compton scattering amplitude γ∗(q)p(P)→
γ(q′)p(P ′) factorizes as the convolution in x of the amplitude tµν for hard Compton scattering
on a quark line with the generalized Compton form factors H(x, t, ζ), E(x, t, ζ), H̃(x, t, ζ), and
Ẽ(x, t, ζ) of the target proton [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. Herex is the light-front
momentum fraction of the struck quark, and ζ = Q2/2P ·q plays the role of the Bjorken variable.
The square of the four-momentum transfer from the proton is given by t = ∆2 = 2P · ∆ =
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− (ζ2M2+�∆2⊥)
(1−ζ) , where ∆ is the difference of initial and final momenta of the proton (P = P ′ +∆). We

will be interested in deeply virtual Compton scattering where q2 is large compared to the masses

and t. Then, to leading order in 1/Q2, −q2

2PI·q = ζ . Thus ζ plays the role of the Bjorken variable in
deeply virtual Compton scattering. For a fixed value of −t, the allowed range of ζ is given by

0 ≤ ζ ≤ (−t)
2M2

√1+ 4M2

(−t) − 1

 . (3)

The form factor H(x, t, ζ) describes the proton response when the helicity of the proton is un-
changed, and E(x, t, ζ) is for the case when the proton helicity is flipped. Two additional func-
tions H̃(x, t, ζ), and Ẽ(x, t, ζ) appear, corresponding to the dependence of the Compton ampli-
tude on quark helicity.

Recently, Markus Diehl, Dae Sung Hwang and I [16] have shown how the deeply virtual Compton
amplitude can be evaluated explicitly in the Fock state representation using the matrix elements
of the currents and the boost properties of the light-front wavefunctions. For the n→ n diagonal
term (∆n = 0), the arguments of the final-state hadron wavefunction are x1−ζ

1−ζ , �k⊥1 − 1−x1
1−ζ �∆⊥ for

the struck quark and xi
1−ζ , �k⊥i+ xi

1−ζ �∆⊥ for then−1 spectators. As in the case of leptonic B decays,
one also the evaluation of an n+1 → n−1 off-diagonal term (∆n = −2), where partons 1 and n+1
of the initial wavefunction annihilate into the current leavingn−1 spectators. Thenxn+1 = ζ−x1,
�k⊥n+1 = �∆⊥ − �k⊥1. The remaining n − 1 partons have total momentum ((1 − ζ)P+,−�∆⊥). The
final wavefunction then has arguments x′i = xi

1−ζ and �k′⊥i = �k⊥i + xi
1−ζ �∆⊥.

6. Applications of QCD Factorization to Hard QCD Processes

Factorization theorems for hard exclusive, semi-exclusive, and diffractive processes allow the
separation of soft non-perturbative dynamics of the bound state hadrons from the hard dynamics
of a perturbatively-calculable quark-gluon scattering amplitude. The factorization of inclusive
reactions is reviewed in ref. For reviews and bibliography of exclusive process calculations in
QCD (see Ref. [9, 62]).

The light-front formalism provides a physical factorization scheme which conveniently sep-
arates and factorizes soft non-perturbative physics from hard perturbative dynamics in both
exclusive and inclusive reactions [5, 63].

In hard inclusive reactions all intermediate states are divided according toM2
n < Λ2 andM2

n >
Λ2 domains. The lower mass regime is associated with the quark and gluon distributions defined
from the absolute squares of the LC wavefunctions in the light cone factorization scheme. In the
high invariant mass regime, intrinsic transverse momenta can be ignored, so that the structure
of the process at leading power has the form of hard scattering on collinear quark and gluon
constituents, as in the parton model. The attachment of gluons from the LC wavefunction to
a propagator in a hard subprocess is power-law suppressed in LC gauge, so that the minimal
quark-gluon particle-number subprocesses dominate. It is then straightforward to derive the
DGLAP equations from the evolution of the distributions with logΛ2. The anomaly contribution
to singlet helicity structure function g1(x,Q) can be explicitly identified in the LC factorization
scheme as due to the γ∗g → qq fusion process. The anomaly contribution would be zero if the
gluon is on shell. However, if the off-shellness of the state is larger than the quark pair mass, one
obtains the usual anomaly contribution [64].

In exclusive amplitudes, the LC wavefunctions are the interpolating amplitudes connecting the
quark and gluons to the hadronic states. In an exclusive amplitude involving a hard scale Q2

all intermediate states can be divided according to M2
n < Λ2 < Q2 and M2

n < Λ2 invariant
mass domains. The high invariant mass contributions to the amplitude has the structure of
a hard scattering process TH in which the hadrons are replaced by their respective (collinear)
quarks and gluons. In light-cone gauge only the minimal Fock states contribute to the leading
power-law fall-off of the exclusive amplitude. The wavefunctions in the lower invariant mass
domain can be integrated up to an arbitrary intermediate invariant mass cutoff Λ. The invariant
mass domain beyond this cutoff is included in the hard scattering amplitude TH . The TH satisfy
dimensional counting rules [65]. Final-state and initial state corrections from gluon attachments
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to lines connected to the color-singlet distribution amplitudes cancel at leading twist. Explicit
examples of perturbative QCD factorization will be discussed in more detail in the next section.

The key non-perturbative input for exclusive processes is thus the gauge and frame indepen-
dent hadron distribution amplitude [5, 63] defined as the integral of the valence (lowest particle
number) Fock wavefunction; e.g. for the pion

φπ(xi,Λ) ≡
∫
d2k⊥ψ

(Λ)
qq/π(xi, �k⊥i, λ) (4)

where the global cutoff Λ is identified with the resolution Q. The distribution amplitude con-
trols leading-twist exclusive amplitudes at high momentum transfer, and it can be related to the
gauge-invariant Bethe-Salpeter wavefunction at equal light-cone time. The logarithmic evolution
of hadron distribution amplitudes φH(xi,Q) can be derived from the perturbatively-computable
tail of the valence light-front wavefunction in the high transverse momentum regime [5, 63]. The
conformal basis for the evolution of the three-quark distribution amplitudes for the baryons [66]
has recently been obtained by V. Braun et al. [34]

The existence of an exact formalism provides a basis for systematic approximations and a
control over neglected terms. For example, one can analyze exclusive semi-leptonic B-decays
which involve hard internal momentum transfer using a perturbative QCD formalism [6, 7, 67,
68, 69, 70] patterned after the perturbative analysis of form factors at large momentum transfer.
The hard-scattering analysis again proceeds by writing each hadronic wavefunction as a sum of
soft and hard contributions

ψn = ψsoft
n (M2

n < Λ2)+ψhard
n (M2

n > Λ2), (5)

whereM2
n is the invariant mass of the partons in the n-particle Fock state and Λ is the separation

scale. The high internal momentum contributions to the wavefunction ψhard
n can be calculated

systematically from QCD perturbation theory by iterating the gluon exchange kernel. The contri-
butions from high momentum transfer exchange to the B-decay amplitude can then be written as
a convolution of a hard-scattering quark-gluon scattering amplitude TH with the distribution am-
plitudesφ(xi,Λ), the valence wavefunctions obtained by integrating the constituent momenta up
to the separation scaleMn < Λ < Q. Furthermore in processes such as B → πD where the pion is
effectively produced as a rapidly-moving small Fock state with a small color-dipole interactions,
final state interactions are suppressed by color transparency. This is the basis for the pertur-
bative hard-scattering analyses [6, 7, 67, 69, 70]. In a systematic analysis, one can identify the
hard PQCD contribution as well as the soft contribution from the convolution of the light-front
wavefunctions. Furthermore, the hard-scattering contribution can be systematically improved.

Given the solution for the hadronic wavefunctions ψ(Λ)n with M2
n < Λ2, one can construct

the wavefunction in the hard regime with M2
n > Λ2 using projection operator techniques. The

construction can be done perturbatively in QCD since only high invariant mass, far off-shell matrix
elements are involved. One can use this method to derive the physical properties of the LC

wavefunctions and their matrix elements at high invariant mass. Since M2
n =

∑n
i=1

(
k2⊥+m2

x

)
i
,

this method also allows the derivation of the asymptotic behavior of light-front wavefunctions
at large k⊥, which in turn leads to predictions for the fall-off of form factors and other exclusive
matrix elements at large momentum transfer, such as the quark counting rules for predicting
the nominal power-law fall-off of two-body scattering amplitudes at fixed θcm [65] and helicity
selection rules [71]. The phenomenological successes of these rules can be understood within
QCD if the coupling αV(Q) freezes in a range of relatively small momentum transfer [72].

7. Two-Photon Processes

The simplest and perhaps the most elegant illustration of an exclusive reaction in QCD is the
evaluation of the photon-to-pion transition form factor Fγ→π(Q2) [5, 73] which is measurable in
single-tagged two-photon ee → eeπ0 reactions. The form factor is defined via the invariant ampli-
tude Γµ = −ie2Fπγ(Q2)εµνρσpπν ερqσ . As in inclusive reactions, one must specify a factorization
scheme which divides the integration regions of the loop integrals into hard and soft momenta,
compared to the resolution scale Q̃. At leading twist, the transition form factor then factorizes
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as a convolution of the γ∗γ → qq amplitude (where the quarks are collinear with the final state
pion) with the valence light-front wavefunction of the pion:

FγM(Q2) = 4√
3

∫ 1

0
dxφM(x, Q̃)THγ→M(x,Q

2). (6)

The hard scattering amplitude for γγ∗ → qq is THγM(x,Q2) = [(1− x)Q2]−1 × (1+O(αs)) . The
leading QCD corrections have been computed by Braaten [74]. The evaluation of the next-to-
leading corrections in the physical αV scheme is given in Ref. [72]. For the asymptotic dis-

tribution amplitude φasympt
π (x) = √

3fπx(1 − x) one predicts Q2Fγπ(Q2) = 2fπ
(
1− 5

3
αV (Q∗)
π

)
where Q∗ = e−3/2Q is the BLM scale for the pion form factor. The PQCD predictions have been
tested in measurements of eγ → eπ0 by the CLEO collaboration [75]. The observed flat scal-
ing of the Q2Fγπ(Q2) data from Q2 = 2 to Q2 = 8 GeV2 provides an important confirmation
of the applicability of leading twist QCD to this process. The magnitude of Q2Fγπ(Q2) is re-
markably consistent with the predicted form, assuming the asymptotic distribution amplitude
and including the LO QCD radiative correction with αV(e−3/2Q)/π � 0.12. One could allow for
some broadening of the distribution amplitude with a corresponding increase in the value of αV
at small scales. Radyushkin [76], Ong [77], and Kroll [78] have also noted that the scaling and
normalization of the photon-to-pion transition form factor tends to favor the asymptotic form
for the pion distribution amplitude and rules out broader distributions such as the two-humped
form suggested by QCD sum rules [79].

The two-photon annihilation process γ∗γ → hadrons, which is measurable in single-
tagged e+e− → e+e−hadrons events, provides a semi-local probe of C = + hadron systems
π0, η0, η′, ηc,π+π−, etc. The γ∗γ → π+π− hadron pair process is related to virtual Comp-
ton scattering on a pion target by crossing. The leading twist amplitude is sensitive to the
1/x − 1/(1 − x) moment of the two-pion distribution amplitude coupled to two valence quarks
[49, 80].

Two-photon reactions, γγ → HH at large s = (k1 + k2)2 and fixed θcm, provide a particularly
important laboratory for testing QCD since these cross-channel “Compton" processes are the
simplest calculable large-angle exclusive hadronic scattering reactions. The helicity structure, and
often even the absolute normalization can be rigorously computed for each two-photon channel
[73]. In the case of meson pairs, dimensional counting predicts that for large s, s4dσ/dt(γγ →
MM scales at fixed t/s or θc.m. up to factors of ln s/Λ2. The angular dependence of the γγ →
HH amplitudes can be used to determine the shape of the process-independent distribution
amplitudes, φH(x,Q). An important feature of the γγ → MM amplitude for meson pairs is that
the contributions of Landshoff pitch singularities are power-law suppressed at the Born level –
even before taking into account Sudakov form factor suppression. There are also no anomalous
contributions from the x → 1 endpoint integration region. Thus, as in the calculation of the
meson form factors, each fixed-angle helicity amplitude can be written to leading order in 1/Q in
the factorized form [Q2 = p2

T = tu/s; Q̃x = min(xQ, (l− x)Q)]:

Mγγ→MM =
∫ 1

0
dx

∫ 1

0
dyφM(y, Q̃y)TH(x,y, s, θc.m.φM(x, Q̃x), (7)

where TH is the hard-scattering amplitude γγ → (qq)(qq) for the production of the valence
quarks collinear with each meson, and φM(x, Q̃) is the amplitude for finding the valence q and q
with light-front fractions of the meson’s momentum, integrated over transverse momenta k⊥ < Q̃.
The contribution of non-valence Fock states are power-law suppressed. Furthermore, the helicity-
selection rules [71] of perturbative QCD predict that vector mesons are produced with opposite
helicities to leading order in 1/Q and all orders in αs . The dependence in x and y of several
terms in Tλ,λ′ is quite similar to that appearing in the meson’s electromagnetic form factor. Thus
much of the dependence on φM(x,Q) can be eliminated by expressing it in terms of the meson
form factor. In fact, the ratio of the γγ → π+π− and e+e− → µ+µ− amplitudes at large s and
fixed θCM is nearly insensitive to the running coupling and the shape of the pion distribution
amplitude:

dσ
dt (γγ → π+π−)
dσ
dt (γγ → µ+µ−)

∼ 4|Fπ(s)|2
1− cos2 θc.m.

. (8)
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The comparison of the PQCD prediction for the sum of π+π− plus K+K− channels with recent
CLEO data [81] is shown in Fig. 1. The CLEO data for charged pion and kaon pairs show a clear
transition to the scaling and angular distribution predicted by PQCD [73] for W =

√
(sγγ > 2

GeV. It is clearly important to measure the magnitude and angular dependence of the two-photon
production of neutral pions and ρ+ρ− cross sections in view of the strong sensitivity of these
channels to the shape of meson distribution amplitudes. QCD also predicts that the production
cross section for charged ρ-pairs (with any helicity) is much larger that for that of neutral ρ pairs,
particularly at large θc.m. angles. Similar predictions are possible for other helicity-zero mesons.
The cross sections for Compton scattering on protons and the crossed reaction γγ → pp at high
momentum transfer have also been evaluated [82, 83], providing important tests of the proton
distribution amplitude.
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Figure 1: Comparison of the sum of γγ → π+π− and γγ → K+K− meson pair production cross sections
with the scaling and angular distribution of the perturbative QCD prediction [73]. The data are from the
CLEO collaboration [81].

It is particularly compelling to see a transition in angular dependence between the low energy
chiral and PQCD regimes. The success of leading-twist perturbative QCD scaling for exclusive
processes at presently experimentally accessible momentum transfer can be understood if the
effective coupling αV(Q∗) is approximately constant at the relatively small scales Q∗ relevant to
the hard scattering amplitudes [72]. The evolution of the quark distribution amplitudes In the
low-Q∗ domain at also needs to be minimal. Sudakov suppression of the endpoint contributions is
also strengthened if the coupling is frozen because of the exponentiation of a double logarithmic
series.

Clearly much more experimental input on hadron wavefunctions is needed, particularly from
measurements of two-photon exclusive reactions into meson and baryon pairs at the high lumi-
nosity B factories. For example, the ratio dσ

dt (γγ → π0π0)/dσdt (γγ → π+π−) is particularly sensi-
tive to the shape of pion distribution amplitude. Baryon pair production in two-photon reactions
at threshold may reveal physics associated with the soliton structure of baryons in QCD [84, 85].
In addition, fixed target experiments can provide much more information on fundamental QCD
processes such as deeply virtual Compton scattering and large angle Compton scattering.

8. Diffraction and Light-Cone Wavefunctions

The diffractive dissociation of a hadron at high energies, by either Coulomb or Pomeron ex-
change, can be understood as the materialization of the projectile’s light-cone wavefunctions;
in particular, the diffractive dissociation of a meson, baryon, or photon into high transverse
momentum jets measures the shape and other features of the projectile’s distribution ampli-
tude, φ(xi,Q), the valence wavefunction which controls high momentum transfer exclusive am-
plitudes. Diffractive dissociation can also test fundamental properties of QCD, including color
transparency and intrinsic charm.

Diffractive dissociation in QCD can be understood as a three-step process:

1. The initial hadron can be decomposed in terms of its quark and gluon constituents in terms
of its light-cone Fock-state wavefunctions.
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2. In the second step, the incoming hadron is resolved by Pomeron or Odderon (multi-gluon)
exchange with the target or by Coulomb dissociation. The exchanged interaction has to
supply sufficient momentum transfer qµ to put the diffracted state X on shell. Light-cone
energy conservation requires q− = (m2

X −m2
π)/P+π , where mX is the invariant mass of X.

In a heavy target rest system, the longitudinal momentum transfer for a pion beam is qz =
(m2

X −m2
π)/Eπ lab. Thus the momentum transfer t = q2 to the target can be sufficiently

small so that the target remains intact.

In perturbative QCD, the pomeron is generally be represented as multiple gluon exchange
between the target and projectile. Effectively this interaction occurs over a short light-
cone time interval, and thus like photon exchange, the perturbative QCD pomeron can be
effectively represented as a local operator. This description is believed to be applicable
when the pomeron has to resolve compact states and is the basis for the terminology “hard
pomeron". The BFKL formalism generalizes the perturbative QCD treatment by an all-orders
perturbative resummation, generating a pomeron with a fixed Regge intercept αP(0). Next
to leading order calculations with BLM scale fixing leads to a predicted intercept αP(0) �
0.4 [86]. However, when the exchange interactions are soft, a multiperipheral description in
terms of meson ladders may dominate the physics. This is the basis for the two-component
pomeron model of Donnachie and Landshoff [87].

Consider a collinear frame where the incident momentum P+π is large and s = (pπ +
ptarget)2 � p+πp

−
target. The matrix element of an exchanged gluon with momentum qi

between the projectile and an intermediate state |N〉 is dominated by the “plus cur-

rent":
〈
π|j+(0) exp(i1

2q
+
i x

− − iq⊥i · x⊥|N
〉

. Note that the coherent sum of couplings
of an exchanged gluon to the pion system vanishes when its momentum is small com-
pared to the characteristic momentum scales in the projectile light-cone wavefunction:
q⊥i∆x⊥ 
 1 and q+i ∆x

− 
 1. The destructive interference of the gauge couplings
to the constituents of the projectile follows simply from the fact that the color charge
operator has zero matrix element between distinct eigenstates of the QCD Hamiltonian:
〈A|Q|B〉 ≡

∫
d2x⊥dx−

〈
A|j+(0)|B〉 = 0 [88]. At high energies the change in k+i of the con-

stituents can be ignored, so that Fock states of a hadron with small transverse size interact
weakly even in a nuclear target because of their small dipole moment. This is the basis of
“color transparency” in perturbative QCD [2, 23]. To a good approximation the sum of cou-
plings to the constituents of the projectile can be represented as a derivative with respect
to transverse momentum. Thus photon exchange measures a weighted sum of transverse
derivatives ∂k⊥ψn(xi, k⊥i , λi), and two-gluon exchange measures the second transverse par-
tial derivative [89].

3. The final step is the hadronization of the n constituents of the projectile Fock state into
final state hadrons. Since q+i is small, the number of partons in the initial Fock state and
the final state hadrons are unchanged. Their coalescence is thus governed by the convolu-
tion of initial and final-state Fock state wavefunctions. In the case of states with high k⊥,
the final state will hadronize into jets, each reflecting the respective xi of the Fock state
constituents. In the case of higher Fock states with intrinsic sea quarks such as an extra cc
pair (intrinsic charm), one will observe leading J/ψ or open charm hadrons in the projectile
fragmentation region; i.e., the hadron’s fragments will tend to have the same rapidity as that
of the projectile.

For example, diffractive multi-jet production in heavy nuclei provides a novel way to measure
the shape of the LC Fock state wavefunctions and test color transparency. Consider the reaction
[2, 3, 90] πA → Jet1 + Jet2 + A′ at high energy where the nucleus A′ is left intact in its ground
state. The transverse momenta of the jets balance so that �k⊥i+ �k⊥2 = �q⊥ < R−1

A . The light-front
longitudinal momentum fractions also need to add to x1+x2 ∼ 1 so that ∆pL < R−1

A . The process
can then occur coherently in the nucleus. Because of color transparency, the valence wavefunction
of the pion with small impact separation, will penetrate the nucleus with minimal interactions,
diffracting into jet pairs [2]. The x1 = x, x2 = 1 − x dependence of the di-jet distributions will
thus reflect the shape of the pion valence light-front wavefunction in x; similarly, the �k⊥1 − �k⊥2

relative transverse momenta of the jets gives key information on the second derivative of the
underlying shape of the valence pion wavefunction [3, 89, 90]. The diffractive nuclear amplitude
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extrapolated to t = 0 should be linear in nuclear number A if color transparency is correct. The
integrated diffractive rate should then scale as A2/R2

A ∼ A4/3.
The results of a diffractive dijet dissociation experiment of this type E791 at Fermilab using

500 GeV incident pions on nuclear targets [91] appear to be consistent with color transparency.
The measured longitudinal momentum distribution of the jets [92] is consistent with a pion
light-cone wavefunction of the pion with the shape of the asymptotic distribution amplitude,
φasympt
π (x) = √

3fπx(1 − x). Data from CLEO [75] for the γγ∗ → π0 transition form factor
also favor a form for the pion distribution amplitude close to the asymptotic solution to the
perturbative QCD evolution equation [5].

The interpretation of the diffractive dijet processes as measures of the hadron distribution
amplitudes has recently been questioned by Braun et al. [93] and by Chernyak [94] who have cal-
culated the hard scattering amplitude for such processes at next-to-leading order. However, these
analyses neglect the integration over the transverse momentum of the valence quarks and thus
miss the logarithmic ordering which is required for factorization of the distribution amplitude
and color-filtering in nuclear targets.

As noted above, the diffractive dissociation of a hadron or nucleus can also occur via the
Coulomb dissociation of a beam particle on an electron beam (e.g. at HERA or eRHIC) or on
the strong Coulomb field of a heavy nucleus (e.g. at RHIC or nuclear collisions at the LHC) [89].
The amplitude for Coulomb exchange at small momentum transfer is proportional to the first
derivative

∑
i ei

∂
�kTi
ψ of the light-front wavefunction, summed over the charged constituents. The

Coulomb exchange reactions fall off less fast at high transverse momentum compared to pomeron
exchange reactions since the light-front wavefunction is effective differentiated twice in two-gluon
exchange reactions.

It will also be interesting to study diffractive tri-jet production using proton beams pA →
Jet1+ Jet2+ Jet3+A′ to determine the fundamental shape of the 3-quark structure of the valence
light-front wavefunction of the nucleon at small transverse separation [3]. For example, consider
the Coulomb dissociation of a high energy proton at HERA. The proton can dissociate into three
jets corresponding to the three-quark structure of the valence light-front wavefunction. We can
demand that the produced hadrons all fall outside an opening angle θ in the proton’s fragmen-
tation region. Effectively all of the light-front momentum

∑
j xj � 1 of the proton’s fragments

will thus be produced outside an “exclusion cone". This then limits the invariant mass of the
contributing Fock state M2

n > Λ2 = P+2 sin2 θ/4 from below, so that perturbative QCD counting
rules can predict the fall-off in the jet system invariant massM . The segmentation of the forward
detector in azimuthal angle φ can be used to identify structure and correlations associated with
the three-quark light-front wavefunction [89]. One can use also measure the dijet structure of
real and virtual photons beams γ∗A → Jet1 + Jet2 + A′ to measure the shape of the light-front
wavefunction for transversely-polarized and longitudinally-polarized virtual photons. Such ex-
periments will open up a direct window on the amplitude structure of hadrons at short distances.
The light-front formalism is also applicable to the description of nuclei in terms of their nucleonic
and mesonic degrees of freedom [95, 96]. Self-resolving diffractive jet reactions in high energy
electron-nucleus collisions and hadron-nucleus collisions at moderate momentum transfers can
thus be used to resolve the light-front wavefunctions of nuclei.

Thus diffractive jet production can provide direct empirical information on the light-front wave-
functions of hadrons. The E791 experiment at Fermilab has not only determined the main features
of the pion wavefunction, but has also confirmed color transparency, a fundamental test of the
gauge properties of QCD. Analogous reaction involving nuclear projectiles can resolve the light-
front wavefunctions of nuclei in terms of their nucleon and mesonic degrees of freedom. It is
also possible to measure the light-front wavefunctions of atoms through high energy Coulomb
dissociation.

9. Heavy Quark Fluctuations in Diffractive Dissociation

Since a hadronic wavefunction describes states off of the light-cone energy shell, there is a
finite probability of the projectile having fluctuations containing extra quark-antiquark pairs,
such as intrinsic strangeness charm, and bottom. In contrast to the quark pairs arising from
gluon splitting, intrinsic quarks are multiply-connected to the valence quarks and are thus part of
the dynamics of the hadron. Recently Franz, Polyakov, and Goeke have analyzed the properties of

E211



13

the intrinsic heavy-quark fluctuations in hadrons using the operator-product expansion [97]. For
example, the light-cone momentum fraction carried by intrinsic heavy quarks in the protonxQQ as
measured by the T++ component of the energy-momentum tensor is related in the heavy-quark
limit to the forward matrix element 〈p|trc(G+αG+βGαβ)/m2

Q|p〉, where Gµν is the gauge field
strength tensor. Diagrammatically, this can be described as a heavy quark loop in the proton self-
energy with four gluons attached to the light, valence quarks. Since the non-Abelian commutator
[Aα,Aβ] is involved, the heavy quark pairs in the proton wavefunction are necessarily in a color-
octet state. It follows from dimensional analysis that the momentum fraction carried by the QQ
pair scales as k2⊥/m

2
Q where k⊥ is the typical momentum in the hadron wave function. [In contrast,

in the case of Abelian theories, the contribution of an intrinsic, heavy lepton pair to the bound
state’s structure first appears in O(1/m4

L). One relevant operator corresponds to the Born-Infeld
(Fµν)4 light-by-light scattering insertion, and the momentum fraction of heavy leptons in an atom
scales as k4⊥/m

4
L.]

Intrinsic charm can be materialized by diffractive dissociation into open or hidden charm states
such as pp → J/ψXp′,ΛcXp′. At HERA one can measure intrinsic charm in the proton by
Coulomb dissociation: pe → ΛCXe′, and J/ψXe′. Since the intrinsic heavy quarks tend to have
the same rapidity as that of the projectile, they are produced at large xF in the beam fragmenta-
tion region. The charm structure function measured by the EMC group shows an excess at large
xbj , indicating a probability of order 1% for intrinsic charm in the proton [21]. The presence of
intrinsic charm in light-mesons provides an explanation for the puzzle of the large J/ψ → ρπ
branching ratio and suppressed ψ′ → ρπ decay [98]. The presence of intrinsic charm quarks in
the B wave function provides new mechanisms for B decays. For example, Chang and Hou have
considered the production of final states with three charmed quarks such as B → J/ψDπ and
B → J/ψD∗ [99]; these final states are difficult to realize in the valence model, yet they occur
naturally when the b quark of the intrinsic charm Fock state |bucc〉 decays via b → cud. In fact,
the J/ψ spectrum for inclusive B → J/ψX decays measured by CLEO and Belle shows a distinct
enhancement at the low J/ψ momentum where such decays would kinematically occur. Alter-
natively, this excess could reflect the opening of baryonic channels such as B → J/ψpΛ [100].
Recently, Susan Gardner and I have shown that the presence of intrinsic charm in the hadrons’
light-cone wave functions, even at a few percent level, provides new, competitive decay mecha-
nisms for B decays which are nominally CKM-suppressed [101]. For example, the weak decays
of the B-meson to two-body exclusive states consisting of strange plus light hadrons, such as
B → πK, are expected to be dominated by penguin contributions since the tree-level b → suu
decay is CKM suppressed. However, higher Fock states in the B wave function containing charm
quark pairs can mediate the decay via a CKM-favored b → scc tree-level transition. Such intrin-
sic charm contributions can be phenomenologically significant. Since they mimic the amplitude
structure of “charming” penguin contributions [102], charming penguins need not be penguins
at all [101].

10. Calculations of Light-Cone Wavefunctions

Is there any hope of computing light-front wavefunctions from first principles? The solution
of the light-front Hamiltonian equation HQCDLC |Ψ〉 = M2|Ψ〉 is an eigenvalue problem which in
principle determines the masses squared of the entire bound and continuum spectrum of QCD. If
one introduces periodic or anti-periodic boundary conditions, the eigenvalue problem is reduced
to the diagonalization of a discrete Hermitian matrix representation of HQCDLC . The light-front
momenta satisfy x+ = 2π

L ni and P+ = 2π
L K, where

∑
i ni = K. The number of quanta in the

contributing Fock states is restricted by the choice of harmonic resolution. A cutoff on the in-
variant mass of the Fock states truncates the size of the matrix representation in the transverse
momenta. This is the essence of the DLCQ method [103], which has now become a standard
tool for solving both the spectrum and light-front wavefunctions of one-space one-time theories
– virtually any 1 + 1 quantum field theory, including “reduced QCD" (which has both quark and
gluonic degrees of freedom) can be completely solved using DLCQ [45, 104]. The method yields
not only the bound-state and continuum spectrum, but also the light-front wavefunction for each
eigensolution [105, 106].

In the case of theories in 3+1 dimensions, Hiller, McCartor, and I [107, 108] have recently shown
that the use of covariant Pauli-Villars regularization with DLCQ allows one to obtain the spectrum
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and light-front wavefunctions of simplified theories, such as (3+1) Yukawa theory. Dalley et al.
have shown how one can use DLCQ in one space-one time, with a transverse lattice to solve
mesonic and gluonic states in 3+ 1 QCD [109]. The spectrum obtained for gluonium states is in
remarkable agreement with lattice gauge theory results, but with a huge reduction of numerical
effort. Hiller and I [110] have shown how one can use DLCQ to compute the electron magnetic
moment in QED without resort to perturbation theory.

One can also formulate DLCQ so that supersymmetry is exactly preserved in the discrete ap-
proximation, thus combining the power of DLCQ with the beauty of supersymmetry [111, 112,
113]. The “SDLCQ" method has been applied to several interesting supersymmetric theories, to
the analysis of zero modes, vacuum degeneracy, massless states, mass gaps, and theories in
higher dimensions, and even tests of the Maldacena conjecture [111]. Broken supersymmetry is
interesting in DLCQ, since it may serve as a method for regulating non-Abelian theories [108].

There are also many possibilities for obtaining approximate solutions of light-front wavefunc-
tions in QCD. QCD sum rules, lattice gauge theory moments, and QCD inspired models such as
the bag model, chiral theories, provide important constraints. Guides to the exact behavior of LC
wavefunctions in QCD can also be obtained from analytic or DLCQ solutions to toy models such
as “reduced" QCD(1 + 1). The light-front and many-body Schrödinger theory formalisms must
match In the nonrelativistic limit.

It would be interesting to see if light-front wavefunctions can incorporate chiral constraints
such as soliton (Skyrmion) behavior for baryons and other consequences of the chiral limit in the
soft momentum regime. Solvable theories such as QCD(1+1) are also useful for understanding
such phenomena. It has been shown that the anomaly contribution for the π0 → γγ decay
amplitude is satisfied by the light-front Fock formalism in the limit where the mass of the pion
is light compared to its size [114].

One can also compute the distribution amplitude from the gauge invariant Bethe-Salpeter wave-
function at equal light-cone time. This also allows contact with both QCD sum rules and lattice
gauge theory; for example, moments of the pion distribution amplitudes have been computed in
lattice gauge theory [115, 116, 117].

Dalley [118] has recently calculated the pion distribution amplitude from QCD using a combina-
tion of the discretized DLCQ method for the x− and x+ light-cone coordinates with the transverse
lattice method [119, 120] in the transverse directions. A finite lattice spacing a can be used by
choosing the parameters of the effective theory in a region of renormalization group stability
to respect the required gauge, Poincaré, chiral, and continuum symmetries. The overall normal-
ization gives fπ = 101 MeV compared with the experimental value of 93 MeV. The resulting
DLCQ/transverse lattice pion wavefunction with the best fit to the diffractive di-jet data after cor-
rections for hadronization and experimental acceptance [1]. The predicted form of φπ(x,Q) is
somewhat broader than but not inconsistent with the asymptotic form favored by the measured
normalization of Q2Fγπ0(Q2) and the pion wavefunction inferred from diffractive di-jet produc-
tion. However, there are experimental uncertainties from hadronization and theoretical errors
introduced from finite DLCQ resolution, using a nearly massless pion, ambiguities in setting the
factorization scale Q2, as well as errors in the evolution of the distribution amplitude from 1 to
10 GeV2.

Instanton models also predict a pion distribution amplitude close to the asymptotic form [121].
In contrast, recent lattice results from Del Debbio et al. [116] predict a much narrower shape for
the pion distribution amplitude than the distribution predicted by the transverse lattice. A new
result for the proton distribution amplitude treating nucleons as chiral solitons has recently been
derived by Diakonov and Petrov [122]. Dyson-Schwinger models [123] of hadronic Bethe-Salpeter
wavefunctions can also be used to predict light-cone wavefunctions and hadron distribution am-
plitudes by integrating over the relative k− momentum. There is also the possibility of deriving
Bethe-Salpeter wavefunctions within light-cone gauge quantized QCD [124] in order to properly
match to the light-cone gauge Fock state decomposition.

Clearly much more experimental input on hadron wavefunctions is needed, particularly from
measurements of two-photon exclusive reactions into meson and baryon pairs at the high lu-
minosity B factories. For example, the ratio dσ

dt (γγ → π0π0)/dσdt (γγ → π+π−) is particularly
sensitive to the shape of pion distribution amplitude. Baryon pair production in two-photon re-
actions at threshold may reveal physics associated with the soliton structure of baryons in QCD
[84]. In addition, fixed target experiments can provide much more information on fundamental
QCD processes such as deeply virtual Compton scattering and large angle Compton scattering.
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There has been notable progress in computing light-front wavefunctions directly from the
QCD light-front Hamiltonian, using DLCQ and transverse lattice methods. Even without full non-
perturbative solutions of QCD, one can envision a program to construct the light-front wavefunc-
tions using measured moments constraints from QCD sum rules, lattice gauge theory, and data
from hard exclusive and inclusive processes. One can also be guided by theoretical constraints
from perturbation theory which dictate the asymptotic form of the wavefunctions at large invari-
ant mass, x → 1, and high k⊥. One can also use ladder relations which connect Fock states of
different particle number; perturbatively-motivated numerator spin structures; conformal sym-
metry, guidance from toy models such as “reduced" QCD(1 + 1); and the correspondence to
Abelian theory for NC → 0, as well as many-body Schrödinger theory in the nonrelativistic do-
main.

11. Calculating and Modelling Light-Cone Wavefunctions

The discretized light-cone quantization method [125] is a powerful technique for finding the
non-perturbative solutions of quantum field theories. The basic method is to diagonalize the
light-cone Hamiltonian in a light-cone Fock basis defined using periodic boundary conditions in
x− and x⊥. The method preserves the frame-independence of the front form. The DLCQ method
is now used extensively to solve one-space and one-time theories, including supersymmetric the-
ories. New applications of DLCQ to supersymmetric quantum field theories and specific tests
of the Maldacena conjecture have recently been given by Pinsky and Trittman. There has been
progress in systematically developing the computation and renormalization methods needed to
make DLCQ viable for QCD in physical spacetime. For example, John Hiller, Gary McCartor and
I [126] have shown how DLCQ can be used to solve 3+1 theories despite the large numbers of
degrees of freedom needed to enumerate the Fock basis. A key feature of our work, is the intro-
duction of Pauli Villars fields in order to regulate the UV divergences and perform renormalization
while preserving the frame-independence of the theory. A review of DLCQ and its applications is
given in Ref. [8]. There has also been important progress using the transverse lattice, essentially
a combination of DLCQ in 1+1 dimensions together with a lattice in the transverse dimensions.

Even without explicit solutions, many features of the light-cone wavefunctions follow from
general arguments. Light-cone wavefunctions satisfy the equation of motion:

HQCDLC |Ψ〉 = (H0
LC + VLC)|Ψ〉 = M2|Ψ〉 , (9)

which has the Heisenberg matrix form in Fock space:

M2 −
n∑
i=1

m2
⊥i
xi
ψn =

∑
n′

∫ 〈
n|V |n′〉ψn′ (10)

where the convolution and sum is understood over the Fock number, transverse momenta, plus
momenta and helicity of the intermediate states. Here m2⊥ = m2 + k2⊥. Thus, in general, every
light-cone Fock wavefunction has the form:

ψn = Γn

M2 −∑ni=1
m2
⊥i
xi

(11)

where Γn =
∑
n′
∫
Vnn′ψn. The main dynamical dependence of a light-cone wavefunction away

from the extrema is controlled by its light-cone energy denominator. The maximum of the wave-
function occurs when the invariant mass of the partons is minimal; i.e., when all particles have
equal rapidity and are all at rest in the rest frame. In fact, Dae Sung Hwang and I [88] have noted
that one can rewrite the wavefunction in the form:

ψn = Γn
M2[

∑n
i=1

(xi−x̂i)2
xi + δ2]

(12)

where xi = x̂i ≡ m⊥i/
∑n
i=1m⊥i is the condition for minimal rapidity differences of the con-

stituents. The key parameter is M2 −∑ni=1m
2
⊥i/x̂i ≡ −M2δ2. We can also interpret δ2 � 2ε/M
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where ε = ∑n
i=1m⊥i −M is the effective binding energy. This form shows that the wavefunction

is a quadratic form around its maximum, and that the width of the distribution in (xi − x̂i)2
(where the wavefunction falls to half of its maximum) is controlled by xiδ2 and the transverse
momenta k⊥i . Note also that the heaviest particles tend to have the largest x̂i, and thus the
largest momentum fraction of the particles in the Fock state, a feature familiar from the intrinsic
charm model. For example, the b quark has the largest momentum fraction at small k⊥ in the B
meson’s valence light-cone wavefunction„ but the distribution spreads out to an asymptotically
symmetric distribution around xb ∼ 1/2 when k⊥ �m2

b.
We can also discern some general properties of the numerator of the light-cone wavefunctions.

Γn(xi, k⊥i, λi). The transverse momentum dependence of Γn guarantees Jz conservation for each
Fock state: Each light-cone Fock wavefunction satisfies conservation of the z projection of angular
momentum: Jz =∑n

i=1 S
z
i +

∑n−1
j=1 l

z
j . The sum over szi represents the contribution of the intrinsic

spins of the n Fock state constituents. The sum over orbital angular momenta lzj = −i(k1
j
∂
∂k2
j
−

k2
j
∂
∂k1
j
) derives from the n − 1 relative momenta. This excludes the contribution to the orbital

angular momentum due to the motion of the center of mass, which is not an intrinsic property
of the hadron [10]. For example, one of the three light-cone Fock wavefunctions of a Jz = +1/2
lepton in QED perturbation theory is ψ↑+ 1

2 +1
(x, �k⊥) = −√2 (−k

1+ik2)
x(1−x) ϕ , where ϕ = ϕ(x, �k⊥) =

e/
√

1−x
M2−(�k2⊥+m2)/x−(�k2⊥+λ2)/(1−x) . The orbital angular momentum projection in this case is 	z = −1. The

spin structure indicated by perturbative theory provides a template for the numerator structure
of the light-cone wavefunctions even for composite systems. The structure of the electron’s Fock
state in perturbative QED shows that it is natural to have a negative contribution from relative
orbital angular momentum which balances the Sz of its photon constituents. We can also expect
a significant orbital contribution to the proton’s Jz since gluons carry roughly half of the proton’s
momentum, thus providing insight into the “spin crisis" in QCD.

The fall-off the light-cone wavefunctions at large k⊥ and x → 1 is dictated by QCD perturbation
theory since the state is far-off the light-cone energy shell. This leads to counting rule behavior
for the quark and gluon distributions at x → 1. Notice that x → 1 corresponds to kz → −∞ for
any constituent with nonzero mass or transverse momentum.

The above discussion suggests that an approximate form for the hadron light-cone wavefunc-
tions might be constructed through variational principles and by minimizing the expectation
value of HQCDLC .

12. Structure Functions are Not Parton Distributions

Ever since the earliest days of the parton model, it has been assumed that the leading-twist
structure functions Fi(x,Q2)measured in deep inelastic lepton scattering are determined by the
probability distribution of quarks and gluons as determined by the light-cone wavefunctions of
the target. For example, the quark distribution is

Pq/N(xB,Q2) =
∑
n

∫ k2
i⊥<Q

2
∏
i
dxi d2k⊥i

 |ψn(xi, k⊥i)|2 ∑
j=q
δ(xB − xj). (13)

The identification of structure functions with the square of light-cone wavefunctions is usually
made in LC gauge n · A = A+ = 0, where the path-ordered exponential in the operator product
for the forward virtual Compton amplitude apparently reduces to unity. Thus the deep inelastic
lepton scattering cross section (DIS) appears to be fully determined by the probability distribution
of partons in the target. However, Paul Hoyer, Nils Marchal, Stephane Peigne, Francesco Sannino,
and I have recently shown that the leading-twist contribution to DIS is affected by diffractive
rescattering of a quark in the target, a coherent effect which is not included in the light-cone
wavefunctions, even in light-cone gauge. The distinction between structure functions and parton
probabilities is already implied by the Glauber-Gribov picture of nuclear shadowing [127, 128,
129, 130]. In this framework shadowing arises from interference between complex rescattering
amplitudes involving on-shell intermediate states, as in Fig. 2. In contrast, the wave function of a
stable target is strictly real since it does not have on energy-shell configurations. A probabilistic
interpretation of the DIS cross section is thus precluded.
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It is well-known that in Feynman and other covariant gauges one has to evaluate the corrections
to the “handbag" diagram due to the final state interactions of the struck quark (the line carrying
momentum p1 in Fig. 2) with the gauge field of the target. In light-cone gauge, this effect also
involves rescattering of a spectator quark, the p2 line in Fig. 2. The light-cone gauge is singular –

in particular, the gluon propagator dµνLC(k) = i
k2+iε

[
−gµν + nµkν+kµnν

n·k
]

has a pole at k+ = 0 which
requires an analytic prescription. In final-state scattering involving on-shell intermediate states,
the exchanged momentum k+ is of O (1/ν) in the target rest frame, which enhances the second
term in the propagator. This enhancement allows rescattering to contribute at leading twist even
in LC gauge.

q

q

P

A(p)

γ*(q)

N1 N2N2

p
1

p  – k
 2       1

Figure 2: Glauber-Gribov shadowing involves interference between rescattering amplitudes.

The issues involving final state interactions even occur in the simple framework of abelian
gauge theory with scalar quarks. Consider a frame with q+ < 0. We can then distinguish FSI from
ISI using LC time-ordered perturbation theory [5]. Figure 3 illustrates two LCPTH diagrams which
contribute to the forward γ∗T → γ∗T amplitude, where the target T is taken to be a single quark.
In the aligned jet kinematics the virtual photon fluctuates into a qq pair with limited transverse
momentum, and the (struck) quark takes nearly all the longitudinal momentum of the photon.
The initial q and q momenta are denoted p1 and p2 − k1, respectively,
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Figure 3: Two types of final state interactions. (a) Scattering of the antiquark (p2 line), which in the
aligned jet kinematics is part of the target dynamics. (b) Scattering of the current quark (p1 line). For each
LC time-ordered diagram, the potentially on-shell intermediate states – corresponding to the zeroes of the
denominators Da,Db,Dc – are denoted by dashed lines.

The calculation of the rescattering effect of DIS in Feynman and light-cone gauge through three
loops is given in detail in Ref. [131]. The result can be resummed and is most easily expressed
in eikonal form in terms of transverse distances r⊥, R⊥ conjugate to p2⊥, k⊥. The deep inelastic
cross section can be expressed as

Q4 dσ
dQ2 dxB

= α
16π2

1−y
y2

1
2Mν

∫
dp−2
p−2

d2�r⊥ d2�R⊥ |M̃|2 (14)

where

|M̃(p−2 , �r⊥, �R⊥)| =
∣∣∣∣∣∣sin

[
g2W(�r⊥, �R⊥)/2

]
g2W(�r⊥, �R⊥)/2

Ã(p−2 , �r⊥, �R⊥)

∣∣∣∣∣∣ (15)

is the resummed result. The Born amplitude is

Ã(p−2 , �r⊥, �R⊥) = 2eg2MQp−2 V(m||r⊥)W(�r⊥, �R⊥) (16)

E211



18

where m2
|| = p−2MxB +m2 and

V(mr⊥) ≡
∫
d2 �p⊥
(2π)2

ei�r⊥·�p⊥

p2⊥ +m2
= 1

2π
K0(mr⊥) (17)

The rescattering effect of the dipole of the qq is controlled by

W(�r⊥, �R⊥) ≡
∫
d2�k⊥
(2π)2

1− ei�r⊥·�k⊥
k2⊥

ei�R⊥·�k⊥ = 1
2π

log

(
|�R⊥ + �r⊥|
R⊥

)
. (18)

The fact that the coefficient of Ã in (15) is less than unity for all �r⊥, �R⊥ shows that the rescattering
corrections reduce the cross section. It is the analog of nuclear shadowing in our model.

We have also found the same result for the deep inelastic cross sections in light-cone gauge.
Three prescriptions for defining the propagator pole at k+ = 0 have been used in the literature:

1
k+i

→
[

1
k+i

]
ηi
=


k+i

[
(k+i − iηi)(k+i + iηi)

]−1
(PV)[

k+i − iηi
]−1

(K)[
k+i − iηiε(k−i )

]−1
(ML)

(19)

the principal-value, Kovchegov [132], and Mandelstam-Leibbrandt [133] prescriptions. The ‘sign

function’ is denoted ε(x) = Θ(x)−Θ(−x). With the PV prescription we have Iη =
∫
dk+2

[
1
k+2

]
η2
=

0. Since an individual diagram may contain pole terms ∼ 1/k+i , its value can depend on the
prescription used for light-cone gauge. However, the k+i = 0 poles cancel when all diagrams are
added; the net is thus prescription-independent, and it agrees with the Feynman gauge result.
It is interesting to note that the diagrams involving rescattering of the struck quark p1 do not
contribute to the leading-twist structure functions if we use the Kovchegov prescription to define
the light-cone gauge. In other prescriptions for light-cone gauge the rescattering of the struck
quark line p1 leads to an infrared divergent phase factor exp iφ:

φ = g2 Iη − 1

4π
K0(λR⊥)+O(g6) (20)

where λ is an infrared regulator, and Iη = 1 in the K prescription. The phase is exactly com-
pensated by an equal and opposite phase from final-state interactions of line p2. This irrelevant
change of phase can be understood by the fact that the different prescriptions are related by a
residual gauge transformation proportional to δ(k+) which leaves the light-cone gauge A+ = 0
condition unaffected.

Diffractive contributions which leave the target intact thus contribute at leading twist to deep
inelastic scattering. These contributions do not resolve the quark structure of the target, and thus
they are contributions to structure functions which are not parton probabilities. More generally,
the rescattering contributions shadow and modify the observed inelastic contributions to DIS.

The structure functions measured in deep inelastic lepton scattering are affected by final-state
rescattering, thus modifying their connection with the light-cone probability distributions. In
particular, the shadowing of nuclear structure functions is due to destructive interference effects
from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone
wavefunctions.

Our analysis in the K prescription for light-cone gauge resembles the “covariant parton model"
of Landshoff, Polkinghorne and Short [48, 134] when interpreted in the target rest frame. In this
description of small x DIS, the virtual photon with positive q+ first splits into the pair p1 and p2.
The aligned quark p1 has no final state interactions. However, the antiquark line p2 can interact in
the target with an effective energy ŝ ∝ k2⊥/x while staying close to its mass shell. Thus at small x
and large ŝ, the antiquark p2 line can first multiple scatter in the target via pomeron and Reggeon
exchange, and then it can finally scatter inelastically or be annihilated. The DIS cross section can
thus be written as an integral of the σqp→X cross section over the p2 virtuality. In this way, the
shadowing of the antiquark in the nucleus σqA→X cross section yields the nuclear shadowing of
DIS [129]. Our analysis, when interpreted in frames with q+ > 0, also supports the color dipole
description of deep inelastic lepton scattering at small x. Even in the case of the aligned jet
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configurations, one can understand DIS as due to the coherent color gauge interactions of the
incoming quark-pair state of the photon interacting first coherently and finally incoherently in
the target.
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