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This is a summary of perturbative QCD calculations of baryon form factors. For e+e− going to baryon-antibaryon pairs, normalized
calculations are available and reported for the entire ground state octet and decuplet, including off-diagonal form factors, and for the
S11(1535)-S11. (The latter results are new for this report.) We also include some explanation of how the results come to be.

1. INTRODUCTION

The form factors of baryons have long been studied in elec-
tron scattering, and now we are here to discuss new opportuni-
ties that can come from an e+e− collider at moderate energies
where exclusive cross sections may be measured. One can
foresee measurements of the form factors of baryons in the
timelike region. The richness of these measurements should
be clear. We can in principle measure the elastic and transition
form factors of any baryon, since the baryon-antibaryon pair is
produced in the reaction. We are not limited to baryons which
exist in stable targets.

This talk will focus on results obtained using perturbative
QCD (pQCD). They will therefore be valid at high Q2, but
should at a minimum serve as an estimate of which form factors
will be big and which will be small. It should be emphasized
that pQCD is not a model. It is an outcome of the real theory
of the strong interactions. The scaling laws can be quoted and
demonstrated without approximation, and normalized calcula-
tions proceed directly if the lowest Fock state wave functions
of the quarks inside the hadrons are known. Some modeling
is, however, needed for the latter. The models are not pure
invention, since significant information about (moments of, at
least) the wave functions can be gotten from QCD sum rule
calculations and, less extensively, from lattice gauge theory.

We will tabulate and discuss the results for the form factors,
elastic and non-elastic, for the entire ground state baryon octet
and decuplet in the third section. The results are taken from
many places in known literature. We will also give some new
results for form factors involving the S11(1535), where it hap-
pens that the ingredients have been available for some time,
but had been put together for nucleon to S11 transitions but not
for the elastic case.

The second section will contain a brief summary of how the
results come to be, including some necessary special attention
to the peculiar case of the nucleon to �(1232) transition form
factor.

2. HOW TO DO IT

2.1. Basics

At highQ2, the magnetic form factorGM (but not the elec-
tric one GE) can be calculated using perturbative QCD. The
basic result is that the form factor factors into terms represent-
ing the wave function or distribution amplitude of the baryons
and a hard scattering kernel. Schematically,

GM =
∫

[dx][dy]�(y,Q2)TH (x, y,Q
2)�(x,Q2) . (1)

In more detail, the lowest Fock component of a proton can
be represented as [1]

|p,↑〉 =
∫ [dx d2kT ]
(x1x2x3)1/2

(2)

×
{ψS(xi, kiT )√

6
(2udu− uud − duu)↑↓↑

+ ψA(xi, kiT )√
2

(uud − duu)↑↓↑
}
.

There are two lowest Fock wave functions for isospin 1/2 parti-
cles like the nucleons,ψS,A. If kT is limited and ifQ >> 〈kT 〉,
one can get the factored GM , using

φS,A(x,Q
2) =

∫ ∼Q
[d2kT ]ψS,A(x, kT ) (3)

where one expects the Q dependence to be quite weak, and
results like

GM = 1

Q4

(
16παs

3

)2 ∫
[dx dy] ×

{
2T1φS(x)φS(y)

+ 2

3
(T1 + 2T2)φA(x)φA(y)+ cross terms

}
. (4)
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Here, the 1/Q4 and T1,2 have come from evaluating the hard
scattering kernel, and [1, 2]

T2 = 1

x1x3(1 − x1)y1y3(1 − y3)
, (5)

and similarly for T1.

2.2. Scaling and spin rules

This section could be subtitled “Properties of the hard scat-
tering kernel.” There are scaling and spin selection rules that
follow simply from a few precepts. A typical diagram for TH
is shown in Figure 1.

Figure 1: Example of lowest order perturbation theory diagram hard
scattering kernel in baryon form factor calculation.

To get the power ofQ associated with this diagram, the rules
are

• 1/Q2 for each gluon propagator,

• 1/Q for each quark propagator,

• Q for each quark line.

The spin selection rules are (in part),

• quark helicity is conserved,

• if a single gluon or photon is connected to a quark line,
it must have transverse polarization,

• if two vector bosons are attached to a quark line, one
must have transverse polarization, the other must have
longitudinal polarization,

• the helicities of two quarks connected by a transverse
gluon must be opposite.

There are also definitional Q’s. The above rules are for Feyn-
man diagrams, and a form factor may be defined as a certain
factor times a basic matrix element.

Any of the rules can be violated, but it “costs” factors of
O(m/Q) or of O(〈kT 〉/Q).

2.3. Application to Nucleon

For the nucleon, in the Breit frame one can show

GM ≡ 1

Q
√

2
〈p,↑ |εT · J |p,↑〉

∝ 1

Q
× 1

Q3 = 1

Q4 (6)

where ε is a photon polarization vector, J is the electromag-
netic current operator, and the arrows are for helicity in the
Breit frame. Further,

GE ≡ 1

2mN
〈p,↓ |εT · J |p,↑〉

∝ 〈kT 〉
Q

× 1

Q3 = 1

Q4 . (7)

For GM , an extra 1/Q comes from its definition, but for GE
the extra 1/Q is due to violating a spin selection rule. The
predicted falloff famously works well for GM , beginning at
Q2 below 10 GeV2.

The results can also be converted into Dirac and Pauli form
factors,

F1 = τGM +GE

τ + 1

F2 = GM −GE

τ + 1
∝ 1/Q6, at high Q2, (8)

where τ = Q2/4m2
N . Note that GM and F1 become identical

at high Q2. The prediction for F2 is not yet working well [3].

2.4. Other Resonances

This section will be mainly about notation, with numerical
results coming later. Electromagnetic nucleon to resonance
transitions are often, as in the tables of the Particle Data Group,
given in terms of scaled helicity amplitudes—A1/2 and A3/2
for photons with transverse polarization. For convenience in
writing cross section formulas, these amplitudes have been
divided by the momentum of the photon causing the transition,
in the real photon limit. This momentum is zero for an elastic
form factor, so the the A1/2,3/2 notation is useless for elastic
transitions. I feel it is better to always use an unscaled helicity
form factor. With a mass factor inserted to make the form
factor dimensionless, one has [4]

2mNG+ = 〈B ′,+1

2
|εT · J |B,+1

2
〉 (9)

where the +1/2 is in both cases a helicity in the Breit
frame. (Equivalent is the f+ from [5], with 2mNG+ =√

2m′
B2mBf+.) Using G+ one can directly compare elastic

and off-diagonal form factors. Useful connections are

GM = mN
√

2

Q
G+(N → N)
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A1/2 = e

√
mN

m2
R −m2

N

G+(N → R). (10)

(where e is the electric charge). It is also possible to defineF1 in
a straightforward manner, asymptotically as (mN

√
2/Q)G+,

for off-diagonal transitions and use it to make interbaryon com-
parisons.

Stoler has presented plots testing the pQCD scaling for nu-
cleon to resonance transitions [6]. The scaling predicted by
perturbative QCD works for three cases out of four, starting
safely below 10 GeV2 and continuing until the data runs out
just past 20 GeV2. The exception is theN → �(1232) transi-
tion, which will get a dedicated discussion in the next section.

2.5. The Distribution Amplitudes

This will be just a brief description of how one uses QCD
sum rules to get distribution amplitudes for resonances. A full
description can be gotten from the original literature [7, 8],
or from lectures written up by the present author [9] (who
was among those who extended the method to the Delta reso-
nance [10]).

The idea is to start with some function, such as,

I (q) = i

∫
d4ye−iqy 〈0|TO1(y) O2(0)|0〉 (11)

that one can evaluate in two different ways. Before doing any
evaluation, however, one chooses at least one of the operators
to ensure that only intermediate states of the desired quantum
numbers (for example, isospin 3/2, positive parity, if one is
interested in the Delta) can enter.

One of the ways to evaluate is a quark/gluon evaluation,
which will depend on already fitted parameters like the den-
sity of quark pairs and gluons in the physical vacuum, but
which can be evaluated from start to finish. The other way is a
purely hadronic evaluation, done by inserting complete sets of
intermediate states between the two operators, which depends
on the wave functions of the quarks inside the hadron. One
actually gets moments of the distribution amplitude (the dis-
tribution amplitude multiplied by powers of momentum frac-
tions, and integrated), the moment depending on the details of
the operator chosen. Then one matches the two results to get
the numerical value of the moment.

Having all the moments is equivalent to having the wave
function. Unfortunately, uncertainties in the evaluations build
up for higher moments, so that one only gets a few low mo-
ments. The information is still valuable, and allows reason-
able and normalized choices for distribution amplitudes of the
various particles. Uncertainties also build up for any state
but the lowest in a given category. For example, in the non-
strange sector, results are only available for the nucleon, the
Delta(1232), and the S11(1535). The results for the moments
generally show an asymmetric distribution amplitude for the
octet baryons, wherein quarks with helicity paralleling the par-
ent baryon generally carry a larger than equipartition share of
the momentum. The distribution amplitudes for the decuplet
is, on the other hand, rather symmetrical with momenta on the
average evenly divided.

3. NUMERICAL PREDICTIONS

3.1. Nucleon Form Factors

We can be brief. For the nucleon form factors, in the space-
like region, the data has long been known. Hence the data is
well fit by the theory—or else we would never of heard of the
theory.

There are criticisms of the use of pQCD at current exper-
imental momentum transfers. We will hardly discuss these
here. They are based on excising contributions where internal
four-momenta squared are low, and seeing what remains. In
my opinion, the cutoffs used are quite pessimistic, and further
do not consider that internal lines with low four-momentum
squared can be quite perturbative if they are short range in co-
ordinate space. Discussion on the positive side can be found
in [11], and on the negative side in [12].

3.2. The Nucleon → Delta

The pQCD scaling is not seen for the N → �(1232) elec-
tromagnetic transition. Instead we have the DDR—the Disap-
pearing Delta Resonance, and the resonance peak sinks into
the background with increasing Q2.

But we now know the distribution amplitudes φ� and φS,A
for the nucleon, and [13]

mNQ
3G+(N → �) =

(
16πα2

s /9
)2 ×

×
{

2

3
〈φA|T1 − T2|φS〉 + 1√

3
〈φA|T1|φA〉

}
. (12)

There is a substantial cancellation between the two terms
above. The numbers are,

Q3G+(N → �) =



0.05GeV3 CZ,CP
0.08GeV3 KS,CP
0.02GeV3 COZ,FZOZ ,

(13)

where the letter codes refer to distribution amplitudes for the
nucleon and Delta, in that order, from papers in [7, 8, 10, 14–
16].

The numbers are small. For comparison,

Q3G+(p → p) = 1

mN
√

2
Q4GM ≈ 0.75 GeV3, (14)

and

Q3G+(p → N∗(1535)) =
{

0.46GeV3 CZ,CP
0.58GeV3 KS,CP .

(15)

We conclude that, in distinction to the situation for other
form factors, the leading order N → � form factors are not
currently above background. There is a corollary, which is
that the spin prediction E1+ = M1+ for Q → ∞ is not seen
because the leading order amplitude is not yet dominant. We
expect, or hope, thatQ2 > 10GeV 2 will show some noticeable
leading order amplitude, with the ratioE1+/M1+ rising. There
is further discussion in [17, 18].
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3.3. Other Baryons

We come finally to present the results for a whole array of
baryons. These predictions depend on distribution amplitudes
obtained from QCD sum rules in [10, 14–16], with special
credit going to the last listed for having done the largest number
of baryon resonances.

We quote in all cases values for Q4F1 in GeV4, calculated
with a fixed αs = 0.3. First in Table I, we giveQ4F1 for diago-
nal transitions (e.g., 	+ for the timelike region means 	+	+
=	+	−

) for the ground state baryon octet. The prediction for
the 	0 → 
0 electromagnetic transition is also given. (For
full set of octet baryons, there are also predictions from the
diquark model [19].)

Table I Asymptotic form factors F1 for the octet baryons.

octet baryon Q4F1 GeV4

n −0.5

p 1.0

	− −0.65

	0 0.27

	+ 1.19


0 −0.23

�− −0.60

�0 −0.52

	0 → 
0 0.54

Table II is the same but for the ground state decuplet baryons.
These tend to be smaller than the octet because the smoothness
of the wave function gives less strength near the end points,
where the bulk of the contributions arise.

Table II Asymptotic form factors F1 for the decuplet baryons.

decuplet baryon Q4F1 GeV4

� −0.02

�∗− −0.083

�∗0 0.014

	∗− −0.031

	∗0 0.016

	∗+ 0.062

�− −0.085

�0 0.

�+ 0.085

�++ 0.17

And then in Table III we have Q4F1 for the ground state
decuplet to octet baryon transitions, or associated baryon-
antibaryon production in the timelike region.

Finally, we have Table IV which gives the asymptoticQ4F1
for transitions involving the negative parity S11(1535) reso-
nance. A surprise is the large size of the neutral S11 elastic
form factor.

Table III Asymptotic form factor F1 for the octet to decuplet baryon
transitions.

octet-decuplet transition Q4F1 GeV4

n → �0 −0.08

p → �+ 0.08

	− → 	∗− 0.016

	0 → 	∗0 0.024

	+ → 	∗+ 0.033


0 → 	∗0 0.015

�− → �∗− 0.013

�0 → �∗0 0.024

Table IV Asymptotic form factors F1 for transitions involving the
S11(1535).

transition Q4F1 GeV4

n → S0
11 0.35

p → S+
11 0.7

S0
11 → S0

11 1.6

S+
11 → S+

11 0.17

3.4. Comments on e+e− → BB̄

As is too commonly said, the relation between the space-
like and timelike region at finite Q2 requires more thought.
The data [20] on F1 or GM for pp̄ is about twice as large at
timelike Q2 than at the corresponding spacelike Q2 in the 10
GeV2 region. A rough estimate of the effects of quark mass
and transverse momenta shows that a factor of 2 in this Q2

region is reasonable from the theoretical side. (The estimate
is along the lines of estimates in the spacelike region showing
that the mass term in the dipole parameterization of about 0.71
GeV2 is reasonable [21].) One can take several attitudes to
this statement. One is that pQCD with expected amendations
does well. Another is that it shows that we are not at the point
where masses are neglectable. These are higher twist effects,
and there are others, including contributions of higher Fock
states to the form factors.

4. LAST THOUGHTS

Baryon form factors are calculable at high Q2 using per-
turbative QCD in either the spacelike or timelike region. The
results are experimentally good for the nucleon elastic and nu-
cleon to S11 form factors at Q2 above a few GeV2 spacelike,
and one can explain the lack of currently observed scaling of
the nucleon to �(1232) transition.

The proposed e+e− machine is a vehicle to measure timelike
form factors for a host of unstable baryons. Predictions exist
to shoot at for octet elastic, decuplet elastic, octet-decuplet
off-diagonal, and S11 form factors. There are also non-pQCD
predictions, for example those reported by Dubnicka et al. at
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this meeting [22], and prediction from the diquark model by
Jakob et al [19].

The results will cast light on the quarkic wave functions
of baryons. The predictions quoted here are specific to the
QCD sum rule wave functions we have used. The actual wave
functions may be different and the form factor measurements,
with the possibility of combining them with J/ψ,ψ, . . . →
BB̄ and γ γ → BB̄, can help ferret them out.
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