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We discuss a necessary nonvalence contribution in timelike exclusive processes. Following a Schwinger-Dyson type of approach, we relate
the nonvalence contribution to an ordinary light-front wave function that has been extensively tested in the spacelike exclusive processes.
A complicate multi-body energy denominator is exactly cancelled in summing the light-front time-ordered amplitudes. Applying our
method to K�3 and D0 → K−�+ν� where a rather substantial nonvalence contribution is expected, we find not only an improvement in
comparing with the experimental data but also a covariance(that is, frame-independence) of existing light-front constituent quark model.

1. INTRODUCTION

As discussed in this PEP-N meeting, the facilities that co-
piously produce the lower-lying mesons such as K and D can
provide a lot of rich physics as exciting as the new and up-
graded B-meson factories promise. To fulfill such excitement,
however, intensive theoretical studies should be accompanied
in the analyses of exclusive meson decays and form factors.
Thus, more and more scrutinized model analyses are called
for.

Perhaps, one of the most popular formulations for the anal-
ysis of exclusive processes may be provided in the framework
of light-front (LF) quantization [1]. In particular, the Drell-
Yan-West (q+ = q0 + q3 = 0) frame has been extensively
used in the calculation of various electroweak form factors
and decay processes [2–5]. As an example, only the parton-
number-conserving (valence) Fock state contribution is needed
in q+ = 0 frame when the “good" component of the current,
J+ or J⊥ = (Jx, Jy), is used for the spacelike electromagnetic
form factor calculation of pseudoscalar mesons. The LF ap-
proach may also provide a bridge between the two fundamen-
tally different pictures of hadronic matter, i.e. the constituent
quark model (CQM) (or the quark parton model) closely re-
lated to the experimental observations and the quantum chro-
modynamics (QCD) based on a covariant non-abelian quantum
field theory. The crux of possible connection between the two
pictures is the rational energy-momentum dispersion relation
that leads to a relatively simple vacuum structure. There is no
spontaneous creation of massive fermions in the LF quantized
vacuum. Thus, one can immediately obtain a constituent-type
picture, in which all partons in a hadronic state are connected
directly to the hadron instead of being simply disconnected ex-
citations (or vacuum fluctuations) in a complicated medium.
A possible realization of chiral symmetry breaking in the LF
vacuum has also been discussed in the literature [6].

On the other hand, the analysis of timelike exclusive pro-
cesses (or timelike q2 > 0 region of bound-state form factors)

remained as a rather significant challenge in the LF approach.
In principle, theq+ �= 0 frame can be used to compute the time-
like processes but then it is inevitable to encounter the particle-
number-nonconserving Fock state (or nonvalence) contribu-
tion. The main source of difficulty in CQM phenomenology
is the lack of information on the non-wave-function vertex
(black blob in Figure 1(a)) in the nonvalence diagram arising
from the quark-antiquark pair creation/annihilation. The non-
wave-function vertex (black blob) was recently also called the
embedded state [7]. This should contrast with the white blob
representing the usual LF valence wave function.
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Figure 1: Effective treatment of the LF nonvalence amplitude.

In principle, there is a systematic program laid out by
Brodsky and Hwang [8] to include the particle-number-
nonconserving amplitude to take into account the nonvalence
contributions. However, such a program requires to find all
the higher Fock-state wave functions while there has been rel-
atively little progress in computing the basic wave functions
of hadrons from first principles. Recently, a method of an-
alytic continuation from the spacelike region has also been
suggested to generate necessary information in the timelike
region without encountering a direct calculation of the non-
valence contribution [9]. Even though some explicit example
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has been presented for manifestly covariant theoretical mod-
els, this method has not yet been implemented to more realistic
phenomenological models.

In this talk, we thus present an alternative way of han-
dling the nonvalence contribution. Our aim of new treat-
ment [10] is to make the program more suitable for the CQM
phenomenology specific to the low momentum transfer pro-
cesses. Incidentally, the light-to-light (K�3) and heavy-to-light
(D0 → K−�+ν�) decays involving rather low momentum
transfers bear a substantial contribution from the nonvalence
part and their experimental data are better known than other
semileptonic processes with large momentum transfers. In-
cluding the nonvalence contribution, our results on K�3 and
D0 → K−�+ν� not only show a definite improvement in com-
parison with experimental data but also exhibit a covariance
(that is, frame-independence) of our approach.

This talk is organized as follows. In Section 2, we present
the non-wave-function vertex in the nonvalence diagram in
terms of light-front vertex functions, utilizing the covariant
Bethe-Salpeter(BS) model of (3+1)-dimensional fermion field
theory. The nonvalence part of the weak form factors for 0− →
0− semileptonic decays is expressed in terms of light-front
vertex functions of a hadron and a gauge boson. The link
operator connecting (n − 1)-body to (n + 1)-body in a Fock
state representation is obtained by an analytic continuation of
the usual BS amplitude. We also show that the complicated
(n + 2)-body energy denominators are exactly cancelled in
summing the light-front time-ordered diagrams. In Section 3,
we show our numerical results for K�3 and D0 → K−�+ν�

decays. Conclusions follow in Section 4.

2. NEW EFFECTIVE TREATMENT

2.1. 0− → 0− Semileptonic Decays

The semileptonic decay of Q1q̄ bound state with four-
momentum P

µ
1 and mass M1 into another Q2q̄ bound state

with P
µ
2 and M2 is governed by the weak current, viz.,

Jµ(0) = 〈P2|Q̄2γ
µQ1|P1〉

= f+(q2)(P1 + P2)
µ + f−(q2)qµ, (1)

where qµ = (P1 − P2)
µ is the four-momentum transfer to the

lepton pair (�ν) and m2
� ≤ q2 ≤ (M1 − M2)

2. The covariant
three-point Bethe-Salpeter (BS) amplitude of the total current
Jµ(0) in Eq. (1) may be given by

Jµ(0) = iNc

∫
d4k

(2π)4

H cov
1 H cov

2 Sµ

(p2
1 − m2

1 + iε)(p2
2 − m2

2 + iε)

× 1

(p2
q̄ − m2

q̄ + iε)
, (2)

where Nc is the color factor, H cov
1[2] is the covariant intitial[final]

state meson-quark vertex function that satisfies the BS equa-
tion, and Sµ = Tr[γ5(�p1 +m1)γ

µ(�p2 +m2)γ5(−�pq̄ +mq̄)].
The quark momentum variables are given by p1 = P1 − k,
p2 = P2 − k, and pq̄ = k.

As shown in the literature [7], the LF energy integration
reveals an explicit correspondence between the sum of LF time-
ordered amplitudes and the original covariant amplitude. For
instance, performing the k− pole integration, we obtain the LF
currents, J

µ
V and J

µ
NV corresponding to the usual LF valence

diagram and the nonvalence diagram shown in Figure 1(a),
respectively. Since H cov

2 satisfies the BS equation, we iterate
H cov

2 once and perform its LF energy integration to find the
corresponding LF time-ordered diagrams Figures 1(b) and 1(c)
after the iteration. The similar idea of iteration in a Schwinger-
Dyson (SD) type of approach was presented in [11] to pin
down the LF bound-state equation starting from the covariant
BS equation.

Comparing the LF time-ordered expansions before and after
the iteration, we realize that the following link between the non-
wave-function vertex (black blob) and the ordinary LF wave
function (white blob) as shown in Figure 2 naturally arises,
that is,

(M2 − M2
0)�

′(xi, k⊥i )

=
∫

[dy][d2l⊥]K(xi, k⊥i; yj , l⊥j )�(yj , l⊥j ), (3)

where M is the mass of outgoing meson and M2
0 = (m2

1 +
k2⊥1)/x1 − (m2

2 + k2⊥2)/(−x2) with x1 = 1 − x2 > 1 due to
the kinematics of the non-wave-function vertex.
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Figure 2: Non-wave-function vertex(black blob) linked to an
ordinary LF wave function(white blob).

We note that Eq. (3) essentially takes the same form as the
LF bound-state equation (similar to the LF projection of BS
equation) except the difference in kinematics (for example,
−x2 > 0 for the non-wave-function vertex). Incidentally, Ein-
horn [12] also discussed the extension of the LF BS amplitude
in 1 + 1 QCD to a non-wave-function vertex similar to what
we obtained in this work.

In the above procedure, we also find that the four-body en-
ergy denominator D4 is exactly cancelled in the sum of LF
time-ordered amplitudes as shown in Figures 1(b) and 1(c),
that is, 1/D4D

g
2 + 1/D4D

h
2 = 1/D

g
2 Dh

2 . We thus obtain the
amplitude identical to the nonvalence contribution in terms of
ordinary LF wave functions of gauge boson (W ) and hadron
(white blob) as drawn in Figure 1(d). This method, however,
requires to have some relevant operator depicted as the black
square (K) in Figure 2 (see also Figure 1(d)), that is in general
dependent on the involved momenta connecting one-body to
three-body sector. We now present some details of kinemat-
ics in the semileptonic decay processes to discuss a reason-
ing of how we handle the nonvalence contribution involving
the momentum-dependent K for relatively small momentum
transfer processes such as πe3, K�3 and D → K�ν.
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2.2. Kinematics and Model Description

Our calculation is performed in purely longitudinal momen-
tum frame [10, 13] where q+ > 0 and P1⊥ = P2⊥ = 0 so that
the momentum transfer square q2 = q+q− > 0 is time-like.
One can then easily obtain q2 in terms of the momentum frac-
tion α = P +

2 /P +
1 = 1−q+/P +

1 as q2 = (1−α)(M2
1 −M2

2 /α).
Accordingly, the two solutions for α are given by

α± = M2

M1

[
M2

1 + M2
2 − q2

2M1M2

±
√√√√(M2

1 + M2
2 − q2

2M1M2

)2

− 1


 . (4)

The +(−) sign in Eq. (4) corresponds to the daughter me-
son recoiling in the positive (negative) z-direction relative to
the parent meson. At zero recoil (q2 = q2

max) and maximum
recoil(q2 = 0), α± are given by

α+(q2
max) = α−(q2

max) = M2

M1
,

α+(0) = 1, α−(0) =
(

M2

M1

)2

. (5)

In order to obtain the form factors f±(q2) which are inde-
pendent of α±, defining J+(0)|α=α± ≡ 2P +

1 H+(α±) from
Eq. (1), we obtain

f±(q2) = ± (1 ∓ α−)H+(α+) − (1 ∓ α+)H+(α−)

α+ − α−
. (6)

The form factors f+(q2) and f−(q2) are related to the scalar
form factor f0(q

2) in the following way:

f+(0) = f0(0), f0(q
2) = f+(q2)+ q2

M2
1 − M2

2

f−(q2). (7)

The differential decay rate for 0− → 0− semileptonic decay
is given by [4]

d�

dq2 = G2
F

24π3 |Vq1q̄2 |2Kf (q2)(1 − m2
l

q2 )2

×
{

[Kf (q2)]2

(
1 + m2

l

2q2

)
|f+(q2)|2

+M2
1

(
1 − M2

2

M2
1

)2
3

8

m2
l

q2 |f0(q
2)|2


 , (8)

where GF is the Fermi constant, Vq1q̄2 is the element of the
Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix and the
factor Kf (q2) is given by

Kf (q2) = 1

2M1

[
(M2

1 + M2
2 − q2)2 − 4M2

1 M2
2

]1/2
. (9)

With the iteration procedure Eq. (3) in this q+ > 0 frame,
the results for the “+”-component of the current Jµ in Eq. (2)
are given by

J+
V = Nc

16π3

∫ α

0
dx

∫
d2k⊥

�i(x, k⊥)S+
V �f (x′, k⊥)

x(1 − x)(1 − x′)
,

(10)
and

J+
NV = Nc

16π3

∫ 1

α

dx

∫
d2k⊥

�i(x, k⊥)S+
NV

x(1 − x)(x′ − 1)
�g(x, k⊥)

×
∫

1

y(1 − y)

∫
d2l⊥K(x, k⊥; y, l⊥)�f (y, l⊥), (11)

where Eq. (3) has been used for the nonvalence wave function
at the black blob as shown in Figure 2 (see also Figure 1(d)).

The ordinary LF vertex functions(white blob in Figure 1) in
Eqs. (10) and (11) are given by

�i = hLF
1

M2
1 − M2

01

, M2
01 = m2

1 + k2⊥
1 − x

+ m2
q̄ + k2⊥

x
,

�f = hLF
2

M2
2 − M2

02

, M2
02 = m2

2 + k2⊥
1 − x′ + m2

q̄ + k2⊥
x′ , (12)

where x = k+/P +
1 , x′ = x/α. The �g in Eq. (11) corre-

sponds to the light-front energy denominator (that is, Dg in
Figure 1(d)) and its explicit form is given by

�g(x, k⊥) = 1

α

[
q2

1−α
−
(

k2⊥+m2
1

1−x
+ k2⊥+m2

2
x−α

)] . (13)

We call �g the light-front vertex function of a gauge boson1.
In Eqs. (10) and (11), the trace terms S+

V (p−
q̄ = k−

on) =
(4P +

1 /x′){k2⊥ + [xm1 + (1 − x)mq̄ ][x′m2 + (1 − x′)mq̄ ]} and
S+

NV (p−
1 = p−

1on) = S+
V (p−

i = p−
ion)+4p+

1onp
+
2on(p

−
q̄ −p−

q̄on)

correspond to the product of initial and final LF spin-orbit wave
functions that are uniquely determined by a generalized off-
energy-shell Melosh transformation. Here, the subscript (on)
means on-mass-shell and the instantaneous part of nonvalence
diagram corresponds to 4p+

1onp
+
2on(p

−
q̄ −p−

q̄on) in S+
NV . While

the LF vertex function hLF
1[2] formally stems from H cov

1[2], practi-
cal information on the radial wave function �i[f ](x, k⊥) (con-
sequently hLF

1[2]) can be obtained by LF CQM. The details of
our variational procedure to determine both mass spectra and
wave functions of pseudoscalar mesons were recently docu-
mented in [3, 4] along with an extensive test of the model in
the spacelike exclusive processes. The same model is used
in this work, that is, comparing the LF vertex functions � in
Eq. (12) with our light-front wave function given by [3, 4], we

1While one can in principle also consider the BS amplitude for �g , we
note that such extension does not alter our results within our approximation in
this work because both hadron and gauge boson should share the same kernel.
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identify

�(x, k⊥) =
(

8π3

Nc

)1/2(
∂kz

∂x

)1/2 [x(1 − x)]1/2

M0
φ(x, k⊥),

(14)
where the Jacobian of the variable tranformation k =
(kz, k⊥) → (x, k⊥) is obtained as ∂kz/∂x = M0/[4x(1 − x)]
and the radial wave function is given by

φ(k2) =
(

1

π3/2β3

)1/2

exp(−k2/2β2), (15)

which is normalized as
∫

d3k|φ(k2)|2 = 1. Substituting
Eqs. (14) and (15) into Eqs. (10) and (11), one can obtain the
valence and nonvalence contributions to the weak form factors
for 0− → 0− semileptonic decays in light-front quark model.

While the relevant operator K is in general dependent on
all internal momenta (x, k⊥, y, l⊥), a sort of average on K
over y and l⊥ in Eq. (11) which we define as GP1P2 ≡∫ [dy][d2l⊥]K(x, k⊥; y, l⊥)�f (y, l⊥) is dependent only on
x and k⊥. Now, the range of the momentum fraction x de-
pends on the external momenta for the embedded states. As
shown in Eq. (11), the lower bound of x for the kernel in the
nonvalence contribution is given by α which has the value
α = M2/M1 at the maximum q2. As the mass difference
between the primary and secondary mesons gets smaller, not
only the range of q2 is reduced but also α gets closer to 1.
Perhaps, the best experimental process for such a limit may
be the pion beta decay π± → π0e±ν̄e, where our numerical
prediction f−(0)/f+(0) = −3.2 × 10−3 following the treat-
ment presented in this work is in an excellent agreement with
−3.5 × 10−3 obtained by the method proposed by Jaus [14]
including the zero-modes [8, 13, 15]. In Ademollo-Gatto’s
SU(3) limit [16], the q2 range of the nonvalence contribution
shrinks to zero and α becomes precisely 1. However, even if α

is not so close to 1, the initial wavefunction �i(x, k⊥) plays the
role of a weighting factor in the nonvalence contribution and
enfeeble the contribution from the region of x near 1. Thus, for
the processes that we discuss in this talk, the effective x region
for the nonvalence contribution is quite narrow. Similarly, the
region of the transverse momentum k⊥ is also limited only up
to the scale of hadron size due to the same weighting factor
�i(x, k⊥). Here, we thus approximate GP1P2 as a constant
and examine the validity of this approximation by checking
the frame independence of our numerical results.

For the check of frame-independence, we also compute
the “+” component of the current J

µ
D in the Drell-Yan-West

(q+ = 0) frame where only valence contribution exists. Since
the form factor f+(q2) obtained from J+

D in q+ = 0 frame
is immune to the zero-mode contribution [4, 8, 13, 14], the
comparison of f+(q2) in the two completely different frames
(that is, q+ = 0 and q+ �= 0) would reveal the validity of an
existing model with respect to a covariance. The comparison
of f−(q2), however, cannot give a meaningful test of covari-
ance because of the zero-mode complication as noted in [14].
Indeed, the difference between the two (q+ = 0 and q+ �= 0)
results of f−(q2) amounts to the zero-mode contribution.

3. NUMERICAL RESULTS
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Figure 3: The weak form factors for K0
�3 compared with the

experimental data [17].

In our numerical calculation for the processes of K�3 and
D0 → K−�+ν decays, we use the linear potential parame-
ters presented in [4]. In Figure 3, we show the weak form
factors f+(q2) and f0(q

2) for K0
�3 decays. The thick solid

lines are our analytic solutions obtained from the q+ = 0
frame; note here again that the lower thick solid line (f0) in
Figure 3 is only the partial result without including the zero-
mode contribution while the upper thick solid line (f+ im-
mune to the zero-mode) is the full result. The thin solid lines
are the full results of our effective calculations with a constant
(GKπ =3.95) fixed by the normalization of f+ at q2 = 0 limit.
For comparison, we also show only the valence contributions
(dotted lines) in q+ �= 0 frame. As expected, a clearly dis-
tinguishable nonvalence contribution is found. Following the
popular linear parametrization [18], we plot the results of our
effective solutions (thin solid lines) using fi(q

2) = fi(q
2 =

m2
�)(1 + λiq

2/M2
π+)(i = +, 0). In comparison with the data,

the same normalization as the data f+(0) = 1 [17] was used
in Figure 3. Our effective solution (upper thin solid line) is
not only in good agreement with the data [17] but also almost
identical to that in q+ = 0 frame(upper thick solid line) indi-
cating the frame-independence of our model. Note also that
the difference in f0(q

2) between q+ �= 0 (lower thin solid
line) and q+ = 0(lower thick solid line) frames amounts to the
zero-mode contribution.

In comparison with experimental data, we summarized our
results of several experimental observables in Table 1; i.e. the
actual value of f+(0), the slopes λ+ [λ0] of f+(q2) [f0(q

2)]
at q2 = 0, ξA = f−(0)/f+(0), and the decay rates �(K0

e3)

and �(K0
µ3). In the second column of Table 1, our full results

including nonvalence contributions are presented along with
the valence contributions in the square brackets. In the third
column of Table 1, the results in q+ = 0 frame are presented
with [without] the instantaneous part. As one can see in Table
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Table I Model predictions for the parameters of K0
�3 decays. The decay width is in units of 106 s−1. The used CKM matrix is

|Vus | = 0.2196 ± 0.0023 [18].

Effective q+ = 0 Experiment

f+(0) 0.962 [0.962] 0.962 [0.962]

λ+ 0.026 [0.083] 0.026 [0.026] 0.0288 ± 0.0015[K0
e3]

λ0 0.025 [−0.017] 0.001 [−0.009] 0.025 ± 0.006[K0
µ3]

ξA −0.013 [−1.10] −0.29[−0.41] −0.11 ± 0.09[K0
µ3]

�(K0
e3) 7.3 ± 0.15 7.3 ± 0.15 7.5±0.08

�(K0
µ3) 4.92 ± 0.10 4.66 ± 0.10 5.25±0.07

1, adding the nonvalence contributions clearly improves the
results of λ0, that is, our full result of λ0 = 0.025 is in excellent
agreement with the data, λ

Exp.

0 = 0.025 ± 0.006. Since the
lepton mass is small except in the case of the τ lepton, one may
safely neglect the lepton mass in the decay rate calculation of
the heavy-to-heavy and heavy-to-light transitions. However,
as one can see from the improved result for Kµ3 decay rate,
the reliable calculation of f0(q

2) is required especially for
Kµ3 since the muon(µ) mass is not negligible, even though
the contribution of f0(q

2) is negligible for Ke3 case.

In Figures 4(a,b), we show the weak form factors for D0 →
K−�+ν decays and compare with the experimental data [18]
(full dot) with an error bar at Q2 = 0 as well as the lattice QCD
results [19] (circle and square) and [20] (cross). All the line as-
signments are same as in Figure 3. In Figure 4(a), the thin solid
line of our full result in q+ �= 0 is not visible because it ex-
actly coincides with the thick solid line of the result in q+ = 0
confirming the frame-independence of our calculations. Our
value of f+(0) = 0.736 is also within the error bar of the
data [18], f Exp.

+ (0) = 0.7 ± 0.1. In Figure 4(b), the difference
between the thin and thick solid lines is the measure of the zero-
mode contribution to f0(q

2) in q+ = 0 frame. The form fac-
tors obtained from our effective calculations (GDK = 3.5) are
also plotted with the usual parametrization of pole dominance
model, that is, f+(0)(q

2) = f+(0)(0)/(1 − q2/M2
1−(0+)

). Our
pole masses turn out to be M1− = 2.16 GeV and M0+ = 2.79
GeV, respectively, and we note that M1− = 2.16 GeV is in
good agreement with the mass of D∗

s , that is, 2.1 GeV. Using
CKM matrix element |Vcs | = 1.04 ± 0.16 [18], our branching
ratios Br(D0

e3) = 3.73 ± 1.24 and Br(D0
µ3) = 3.60 ± 1.19 are

also comparable with the experimental data 3.64 ± 0.18 and
3.22 ± 0.17 [18], respectively.

In Figure 5, we show the differential decay rates for D0 →
K−e+νe and D0 → K−µ+νµ transitions obtained from our
effective solutions. As in the case of K�3 decays, we were able
to evaluate the f0(q

2) contribution to the total decay rate for
D0 → K−µ+νµ process in a more reliable manner although
its contribution is more suppressed than the Kµ3 case.

4. CONCLUSION

In summary, we presented an effective treatment of the LF
nonvalence contributions crucial in the timelike exclusive pro-
cesses. Using a SD-type approach and summing the LF time-
ordered amplitudes, we obtained the nonvalence contributions
in terms of ordinary LF wavefunctions of gauge boson and
hadron that have been extensively tested in the spacelike ex-
clusive processes. Including the nonvalence contribution, our
results show a definite improvement in comparison with ex-
perimental data on K�3 and D0 → K−�+ν� decays. Our
result on πe3 is also consistent with the result obtained by
other methods. Furthermore, the frame-independence of our
results indicate that a constant GP1P2 is an approximation ap-
propriate to the small momentum transfer processes. A similar
conclusion was drawn in a recent application of our method to
the skewed quark distributions of the pion at small momentum
transfer region [21]. Applications to the heavy-to-light decay
processes involving large momentum transfers would require
an improvement on this approximation perhaps guided by the
perturbative QCD approach. Consideration along this line is
underway.
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