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We discuss the photon to meson transition form factor for virtual photons, which can be measured in e+e− collisions. We demonstrate that
this form factor is independent of the shape of the meson distribution amplitude over a wide kinematical range. This leads to a parameter-
free prediction of perturbative QCD to leading twist accuracy, which has a status comparable to the famous leading-twist prediction of the
cross section ratio R.

1. INTRODUCTION

Exclusive reactions in QCD involving a large momentum
scale are amenable to a perturbative treatment. A particular
perturbative approach is the so-called hard scattering formal-
ism [1], where the transition amplitude of a certain process is
written in a factorized form as a convolution of a hard scat-
tering amplitude specifying a partonic subprocess at a large
scale and a universal, that is, process independent, hadronic
distribution amplitude. While the hard scattering amplitude
is perturbatively calculable, distribution amplitudes describe
the soft transition from partons to hadrons and thus cannot be
derived from QCD as yet. Therefore, in order to make reliable
predictions for exclusive reactions, it is crucial to obtain infor-
mations about the shape of distribution amplitudes from other
sources.
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Figure 1: Sketch of the transition form factor as measured in
e+e− → e+e−P .

The simplest exclusive observable is the form factor for tran-
sitions from a real or virtual photon to a pseudoscalar meson P ,
measurable in electron-positron scattering, e+e− → e+e−P ,
see sketch in Figure 1. The analysis of the CLEO data [2] for
real photons have been used to constrain the distribution ampli-
tudes for the cases of the pion and the eta, eta’, see, for instance
[3]–[8]. It has been infered that these distribution amplitudes
are close to their asymptotic form.

Generically, the distribution amplitude �P of a pseudoscalar
meson can be expanded in terms of Gegenbauer polynomials

C
3/2
n , the eigenfunctions of the leading-order evolution kernel:

�P (ξ, µF ) = �AS(ξ)


1 +

∞∑
n=2,4,...

BP
n (µF ) C

3/2
n (ξ)


 ,

(1)
where �AS denotes the asymptotic meson distribution ampli-
tude,

�AS(ξ) = 3

2
(1 − ξ2). (2)

ξ is related to the usual longitudinal momentum fraction x of
the quark with respect to the meson by ξ = 2x − 1. The
Gegenbauer coefficients BP

n depend on a factorization scale
µF in the following way:

BP
n (µF ) = BP

n (µ0)

(
αs (µF )

αs (µ0)

)γn

, (3)

with µ0 being a typical hadronic scale for which we choose
a value of 1 GeV. Since the anomalous dimensions γn are
positive fractional numbers any distribution amplitude evolves
into �AS at large scales. The Gegenbauer coefficients contain
non-perturbative information and are therefore principally un-
known.

The topic of this talk is an investigation of the photon-to-
meson transition form factor for virtual photons. In particular,
we address the question whether we can obtain additional infor-
mations for the Gegenbauer coefficients Bπ

n of the distribution
amplitude of the produced meson from the measurement of
the form factor at current and planned e+e− colliders. We will
limit ourselves to the case of a pion and only briefly comment
on eta, eta’towards the end of the talk. A more detailed account
of the analysis will be presented in [9].
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Figure 2: Born graphs contributing to the Pγ (∗) transition form
factor.

2. THE γ ∗ − π TRANSITION FORM FACTOR

The γ ∗-π transition form factor Fπγ ∗ is formally defined
through the γ ∗γ ∗π vertex:

�µν = −ie2 Fπγ ∗(Q2, Q′2) εµναβ qαq ′β , (4)

where q and q ′ denote the photon momenta with respective
spacelike virtualities Q2 = −q2, Q′2 = −q ′2. For the follow-
ing discussion, it is convenient to express Fπγ ∗ in terms of the

average photon virtuality Q
2

and a dimensionless parameter
ω:

Q
2 = 1

2
(Q2 + Q′2), ω = Q2 − Q′2

Q2 + Q′2 , (5)

with −1 ≤ ω ≤ 1. The two photons cannot be distinguished
such that the transition form factor is symmetrical under ω ↔
−ω.

Since we are interested in the leading twist behaviour of
Fπγ ∗ we employ the collinear approximation, that is, we ne-
glect partonic transverse momenta. Power corrections arising
from transverse momenta will be estimated later on. Thus,
the leading twist expression to next-to-leading order (NLO) αs

reads [10]

Fπγ ∗(Q, ω) = 1

3
√

2

fπ

Q
2

∫ 1

−1
dξ

�π(ξ, µF )

1 − ξ2ω2

×
[

1 + αs(µR)

π
K(ω, ξ, Q/µF )

]
. (6)

The function K(ω, ξ, Q/µF ) parametrizes the O(αs) correc-
tions, which have been calculated in [10, 11] within the MS
scheme. The factorization scale µF and the renormalization
scale µR are both of the order Q. In the above expression, we
have taken into account the lowest, that is, valence Fock state
only. fπ ≈ 131 MeV is the well-known pion decay constant.
The Born graphs contributing to the transition form factor are
shown in Figure 2

Using the expansion (1) and taking µR to be independent of
ξ the transition form factor (6) can be rewritten in the following
form:

Fπγ ∗(Q, ω) = fπ√
2 Q

2

[
c0(ω, µR) (7)

+
∑

n=2,4,...

cn(ω, µR, Q/µF ) Bπ
n (µF )

]
,
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Figure 3: The coefficients cn(ω) in the expansion (7) of the πγ ∗
form factor. NLO corrections are included with µF = Q. Through
αs the coefficients depend mildly on µR , which is chosen as
µR = 2 GeV.

with analytically computable functions cn(ω, µR, Q/µF ).
The first four coefficients cn are shown in Figure 3. The

NLO corrections are evaluated using the two-loop expression
of αs for nf = 4 flavours and �

(4)

MS
= 305 MeV. We choose a

factorization scale µF = Q, which is the virtuality of the quark
propagators in Figure 2 at ξ = 0. We see a very rapid decrease
of the coefficients as soon as one goes away from the real-
photon limit ω → 1, where all coefficients behave as cn(ω =
1) = 1 + O(αs). This means that the transition form factor
is sensitive to the Gegenbauer coefficients only for ω → 1.
In this limit, however, the transition form factor measures the
(1 + ξ)−1-moment of the pion distribution amplitude, which,
apart from O(αs) corrections, is given by the sum over all
Gegenbauer coefficients,

〈(1 + ξ)−1〉 = 3

2

[
1 +

∑
n

Bπ
n (µF )

]
. (8)

The phenomenological analysis of the CLEO data [2] led to the
constraint 〈(1+ ξ)−1〉 = 1.37 at Q2 = 8 GeV2 [5]. Assuming
that Bπ

n = 0 for n ≥ 4 this constraint translates into Bπ
2 (µ0) =

−0.15, which implies the distribution amplitude being close to
its asymptotic form, as already mentioned in the introduction.

Before we proceed to a discussion of the region away from
the limit ω → 1, we have to comment on possible power
corrections in the large ω region, where the transition form
factor becomes sensitive to the end-point regions ξ → ±1.
This corresponds to the situation of the quark or antiquark
in the pion having small momentum fraction and the internal
quark between the photon vertices going on-shell. Large power
corrections arising from, e.g., transverse momentum or meson
mass effects, soft overlap contributions or the non-perturbative
behaviour of αs in the infrared region, may spoil the accuracy
of the data analysis.

The most important of these corrections in the region where
the CLEO data are available are the partonic transverse mo-
mentum effects. In order to estimate these effects we will
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Figure 4: Ratio of Fπγ ∗(Q, ω) in the modified perturbative
approach and in the LO leading-twist approximation at

Q
2 = 4 GeV2 (solid line) and at Q

2 = 2 GeV2 (dashed line). Here
we have used the wave function (10) and the asymptotic pion
distribution amplitude �AS.

employ the modified hard scattering approach [12], where the
the expression (6) is replaced by

Fπγ ∗(Q, ω) = 1

4
√

3π2

∫
dξ d2b �̂∗

π (ξ, −b, µF )

×K0(
√

1 + ξω Q b) exp
[−S

(
ξ, b, Q, µR

)]
. (9)

The modified Bessel function K0 appears as the Fourier trans-
form of the hard scattering kernel in leading order αs . The
transverse quark-antiquark separation b is Fourier conjugated
to the partonic transverse momentum k⊥ and �̂∗

π is the Fourier
transform of the outgoing pion’s wave function. The expo-
nential is the Sudakov form factor which describes gluonic
radiative corrections at scales intermediate between the con-
finement region and the hard region; for details see [12].
The most important feature of the Sudakov form factor is
its damping of large quark-antiquark separations. Asymptot-
ically, only configurations with vanishing transverse separa-
tions survive. Since b acts as an infrared cut-off, the fac-
torization scale µF is to be taken as 1/b. The renormaliza-
tion scale is chosen according to the max-prescription [12] as
µR = max {1/b,

√
1 + ξ Q,

√
1 − ξ Q}. Following [5, 13]

we assume for the light-cone wave function in b-space the
Gaussian ansatz

�̃π (ξ, b) = 2πfπ√
6

�π(ξ) exp

[
− (1 − ξ2) b2

16 a2
π

]
(10)

with a−2
π = 8π2f 2

π (1 + Bπ
2 + Bπ

4 + . . .) being the transverse
size parameter. The prediction of the γ → π form factor in
the modified perturbative approach using this wave function
with �π = �AS is in very good agreement with the CLEO
data [5].

In order to demonstrate in which kinematical region the
transverse momentum corrections are less important, in Fig-
ure 4 we show the ratio between the form factor evaluated in

the modified hard scattering approach, Eq. (9), and the leading-
twist approximation in LO αs , i.e., neglecting the contribu-
tions from K(ω, ξ, Q/µF ) in Eq. (6). In both schemes we use
the asymptotic pion distribution amplitude �AS. It is inter-
esting to note that while the dominant effects stem from k⊥-
corrections to the hard scattering amplitude, the Sudakov cor-
rections amount to only less than about 1.5% in the kinematics
considered here. We see that the transverse momentum correc-
tions are negligible for Q � 2 GeV and ω � 0.9, where they
already provide less than 10% corrections. However, as can be
seen in Figure 3, in this region the sensitivity to the Gegenbauer
coefficients decreases very fast. While it appears difficult to
pin down the individual values for the coefficients Bπ

n , one at
least should be able to discriminate between the wide range
of theoretical results for the lowest Bπ

n , ranging from a QCD
sum rule analysis [14], which predicted Bπ

2 (1 GeV) = 0.44
and Bπ

4 (1 GeV) = 0.25, and a preliminary result from lattice
QCD [15] providing Bπ

2 = −0.41 ± 0.06 at a low scale, to
name only a few.

We now turn to a discussion of the kinematical region away
from the real-photon limit ω → 1. In particular, we investigate
the limit ω → 0, where the two photons approximately have
the same virtualities, Q2 ∼ Q′2. The fast decrease of the func-
tions cn appearing in Eq. (7) can be understood by expanding
the hard scattering kernel in Eq. (6) in powers of ω. Using the
properties of the Gegenbauer polynomials, one finds

Fπγ ∗(Q, ω) =√
2fπ

3 Q
2

[
1 − αs(Q)

π
+ 1

5
ω2

(
1 − 5

3

αs(Q)

π

)

+12

35
ω2Bπ

2 (µF )

(
1 + 5

12

αs(Q)

π

[
1 − 10

3
ln

Q
2

µ2
F

])]

+O(ω4, α2
s ) , (11)

where we have chosen µR = Q. While the above result clearly
demonstrates the insensitivity of the transition form factor to
the Gegenbauer coefficients Bπ

n as soon as ω departs from the
limit ω → 1, it provides us with a parameter-free prediction
from QCD to leading-twist accuracy in the small-ω region:

Fπγ ∗(Q, ω) =
√

2fπ

3 Q
2

[
1 − αs(Q)

π

]
+ O(ω2, α2

s ) . (12)

To leading-order αs , this result has been derived a long time
ago by the authors of [16]. The αs-corrections can be found
in Ref. [10] and have been rederived in [8] for the real-photon
case on the basis of the conformal operator product expan-
sion. In Fig. 5 we compare the approximations (11) and (12)
with the full result (6). As we can see, the leading expres-
sion (12) provides a very good approximation not only for
ω → 0, but in fact over a wide range of ω, up to about
ω � 0.5, where αs-corrections start to become important.
Any clear deviation from the leading-twist prediction would
signal large power corrections and therefore, this prediction
well deserves experimental verification. It has a status com-
parable to the famous leading-twist expression of the ratio
σ(e+e− → hadrons)/σ (e+e− → µ+µ−).
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Figure 5: NLO leading-twist prediction for the scaled form factor

Q
2
Fπγ ∗(Q, ω) at Q

2 = 4 GeV2 with Bπ
2 (µ0) = −0.15 and

Bπ
n = 0 for n ≥ 4. For comparison we also show the

approximations (11) and (12).

A completely analogous discussion with essentially the same
conclusions can be pursued for γ ∗ → η, η′ transitions. The
analysis is, however, complicated through the mixing of η and
η′ and contributions from the gluon distribution amplitude at
O(αs). The gluon contributions are negligible and again, we
find that the transition form factors for the η and η′ are hardly
sensitive to the Gegenbauer coefficients over a wide range of
kinematics.

3. CONCLUSIONS

We have investigated the possibility to exploit the γ ∗ → π

transition form factor in order to determine the Gegenbauer
coefficients Bπ

n of the pion distribution amplitude. Perform-
ing an expansion in terms of the dimensionless kinematical
parameter ω which is defined as the ratio of the difference and
the sum of the two photon virtualities, we have been able to
demonstrate that the form factor is independent of the shape of
the pion distribution amplitude over a wide range of ω. As a
consequence, one has a parameter-free prediction from QCD
to leading-twist accuracy, which is valid in a large kinematical
region, and which deserves experimental verification. Any ob-
servable deviation from this prediction is to be seen as a signal
for power corrections.

While the data for the real-photon case, γ → π , where
|ω| = 1, fixes the sum of the Gegenbauer coefficients, data for
values of |ω| around 0.9, say, will allow for a discrimination
of the wide range of theoretical predictions for the lowest Bπ

n .
Similar conclusions hold for γ ∗ → η, η′ transitions.

Concerning the accessibility of the transition form factor at
the running B-factories BarBar, Belle and CLEO, our studies

have revealed that it seems possible, although challenging, to

measure the form factor for Q
2 � 3 GeV2 both in regions of

moderate ω and where |ω| � 1. The planned asymmetrical
e+e− collider at SLAC appears to be suitable for studies of the
form factor after an upgrade to larger center of mass energies
and luminosities.
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