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A practical strategy is presented and successfully implemented to determine form factors in the time-like but unphysical (below threshold)
region using dispersion relations, in a model independent way without any bias towards expected resonances. Space and time-like data
have been employed along with a regularization scheme to unfold and solve the integral equations. Remarkably, resonance structures with
peaks for the ρ(770), ρ′(1600) and a structure near the NN̄ threshold are automatically generated. The � peak is invisible thus refuting
suggestions about any sizeable ss̄ content in the nucleon.

1. THE “IN PRINCIPLE” METHOD

Consider a dispersion relation (DR) for a (generic) normal-
ized nucleon form factor (FF) G(s) with a subtraction at s = 0
and t < 0

ln G(t) = t
√

so − t

π

∫ ∞

so

ln |G(s)|ds

s(s − t)
√

s − so
. (1)

For s > so (the lowest mesonic threshold, 4m2
π for even and

9m2
π for odd G parity NN̄ channels), the phase δ(s) of the FF

defined as G(s) = |G(s)|eiδ(s) is given by the principal value
integral

δ(s) = − s
√

s − so

π
Pr

∫ ∞
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ln |G(s′)|ds′

s′(s′ − s)
√

s′ − so
. (2)

So in principle the method is very simple: (i) use space-like
data on the left side of Eq. (1) and solve the integral equation to
find ln |G(s)| for s > so. (ii) Having determined the modulus
ln |G(s)|, use Eq. (2) to compute the phase δ(s).

The above procedure has been unsuccessful in the past as it is
an “ill-posed” mathematical problem [1, 2]. The result depends
on the input data in an unstable way and an impossible accuracy
is needed before one arrives to a stable unique solution.

2. OUR STRATEGY

A successful method[3] has been developed by splitting the
time-like region into 2 parts:
Region I: is the unknown unphysical region [so, 4m2

N ] for
which the FF is to be determined.
Region II: consists of the physically accessible time-like region
s > 4m2

N , for which data exist and quite accurate asymptotic
estimates are available.

With the above breakup, the unknown part of the integral
equation is reduced to the (small) region I, which is amenable
to a finite matrix analysis with some technical refinements de-
scribed below in brief (the details of the developed procedure
may be found in references [3] and [4]).

An integral equation of the first kind, linear in the unknown
ln |G|, can be derived

ln G(t) − I (t) = t
√

so − t

π

∫ 4m2
N
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s(s − t)
√

s − so
, (3)

where

I (t) = t
√

so − t

π

∫ ∞
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N

ln |G(s)|ds
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√

s − so
, (4)

is a “known” quantity since it can be calculated directly from
experimental data in the time-like region with some recipe to
extrapolate them to very high t values.
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Figure 1: Pion space-like FF computed via DR without (grid band)
and with (light band) subtraction, compared with pion FF space-like
data and square route of proton space-like FF data fit (dark band).

To avoid instabilities usually met in solving first kind inte-
grals such as Eq. (3), we impose a regularization scheme with
smoothness:

• I (t) is calculated using time-like data through a rational,
smooth function with the expected asymptotic behavior.
The subtraction at s = 0 helps in diminishing the impact
which the asymptotic behavior has on the results.

• There is a steep spike near the NN̄ threshold. To avoid
any ensuing instabilities, the upper limit of the unphys-
ical region has been raised to s2 = 4m2

N + � where
� ≈ 0.5GeV 2 and continuity is imposed there. A new
DR is constructed for the region (4m2

N, s2) [3, 4].

• Our regularization consists in requiring the local cur-

Figure 2: Pion FF computed via DR from time-like data.

Figure 3: Phases of proton (light band) and pion (dark band) FF
computed via DR.

vature of the FF in the unphysical region, R2 =∫ s2
so

(
d2|G(s)|

ds2

)2
ds to be limited. Instead of the second

derivative of ln |G|, as is standard[1, 2], we employ the
second derivative of |G| for this purpose. The reason is
that fluctuations in |G| are important only when |G| is
large, while ln |G| fluctuations would be large also when
|G| is small.

• Eq. (3) is then linearized by transforming the integrals
into sums over M = 50 suitable sub intervals in s, with
their widths increasing with s. This introduces further
smoothness, by effectively integrating over any structure
with a narrower half width.

Figure 4: Phase of pion FF (dark band) compared with the half of
nucleon isovector FF (light band).
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Figure 5: Proton magnetic FF computed via DR.

• To minimize the integral

Ro =
L∑

i=1

[
M∑

j=1

Fj

ti
√

so − ti

π

∫ sj+1

sj

ds

s(s − ti )
√

s − so

+I (ti) − ln G(ti)

]2

, (5)

where Fj = ln |G[(sj+1 + sj )/2]| is calculated in the
middle of the j th sub interval. ti , with i = 1, . . . , L,
correspond to the experimental points available in the
space-like region.

• Finally, we have

Rtotal = Ro + τ 6R2 + C.

The “dumping parameter” τ has to be chosen by trial and
error: if it is set too large, it will not respond to sharp
structures, while unstable solutions will result if it is set
too low.

• The uncertainties in the solution of Eqs. (2) and (3),
due to experimental errors, were estimated by simulating
new space- and time-like data according to the quoted
errors and then solving the DR for each simulated set.

3. TEST OF THE REGULARIZATION METHOD

To test the entire procedure and also to get a suitable range
for the parameter τ , we computed the space-like pion FF using

Figure 6: Neutron magnetic FF computed via DR.

time-like data. In the time-like region, this FF is known up
to the J/� mass and at higher Q2, it was extrapolated using
first order QCD [5]. In Figure (1), comparison is made with the
measured (low Q2) space-like data. (Higher space like Q2 data
points are through extrapolations from pion electroproduction
data and thus may have systematic errors). We have also made
other tests [3,4] obtaining good agreement with the ρ peak, the
ρ width and also a dip at 1.6 GeV2 for τ ≈ mπ Figure (2).
The phase of the pion FF approaches just above 2 GeV to its
expected asymptotic value of 180 degrees Figure (3,4).

4. RESULTS FOR THE NUCLEON FF

Below we summarize some salient features of our findings:

• For the first time, resonant structures have been gen-
erated from “smooth” inputs Figures (5,6,7,8). The
method is stable and reliable.

• The combined (ρ + ω) peaks and the ρ′(1600) are gen-
erated at the right mass. However, the ρ peak is much
broader. Earlier analyses [6] had also found a similar
discrepancy.

• No � signal is visible thus signaling a very small ss̄

content in the nucleon.

• Phases for the nucleon are consistent with expectations:
δN → 360◦ within the error bands Figure (3).

• There is an interference pattern near threshold (M ≈
1.88 GeV) which may be related to baryonium Figures
(5,6).
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Figure 7: Imaginary part of the nucleon magnetic isovector FF
computed via DR compared with expectation from unitarity relation.

• ImG
(V )
M changes sign once and ImG

(S)
M appears to

change sign twice and various superconvergence sum
rules are all obeyed by our FF’s Figures (7,8).

By way of comparison, our analysis strongly indicates that
ImFπ does not change sign. Neglecting logaritmic factors
(which we can not resolve), this would suggest (for power law
behavior) that

|Fπ(s)| → |s|−1+ε as |s| → ∞. (ε > 0).

5. CONCLUSIONS

Nucleon time-like magnetic FF have been obtained in an
almost model independent way by means of DR for ln G(q2),
using a regularization method in conjunction with space and
time-like data. Resonances have been found consistent with
the ρ(770) and ρ′(1600) masses. However, a very large ρ

width is obtained - as in previous DR analyses. Further work
is in progress to understand the sources of discrepancies as
well as the relationship of our results with other DR analyses
[7].

Other applications of this strategy have been discussed at
this conference by Y. Srivastava (see contribution T19).
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