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QCD Sum Rule Analysis of V and A

Current Correlators from τ -decay Data
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Two-point correlators of vector and axial currents, obtained from τ -decay data, are studied within the framework of perturbative QCD
and Operator Product Expansion. Various sum rules, obtained from Borel transformation of the correlators in complex plane, are used
to separate the contributions of different operators from each other. The analysis confirms the Q2-dependence of the correlators in the
space-like region, predicted by QCD+OPE. However the operator values are found to be in certain disagreement with the estimations,
obtained from other data.

1. OBJECTIVES

Precise measurements of vector V and axial A spectral func-
tions in hadronic τ -decays by ALEPH [1] and OPAL [2] col-
laborations provide us with the possibility to test various QCD
aspects. Perturbation Theory (PT) and Operator Product Ex-
pansion (OPE) are the most well-established ones. Here we
shall compare theoretical predictions with the data within the
framework of sum rules. Particular details of this analysis can
be found in [3, 4].

The 2-point correlators of charged vector and axial-vector
currents

J = V, A : Vµ = ūγµd , Aµ = ūγµγ5d

can be parametrized by 2 polarization functions �(q2):

i

∫
eiqx

〈
Jµ(x)Jν(0)†

〉
dx

= (qµqν − gµνq
2)�

(1)
J (q2) + qµqν�

(0)
J (q2). (1)

For q2 = s > 0 they have imaginary parts, the so-called
spectral functions

v1/a1(s) = 2π Im �
(1)
V/A(s + i0) (2)

which have been measured from hadronic τ -decays for 0 <

s < m2
τ , the plots can be found in [1, 2]. The scalar axial

polarization function �
(0)
A is basically saturated by single pion

decay channel. Its imaginary part a0 is delta-function, which
can be easily separated from a1/v1.

It turns out to be convenient to consider the sum and dif-
ference v1 ± a1 instead of v1 and a1 separately. Indeed, the
sum v1 + a1 is known with better accuracy, while the differ-
ence v1−a1 does not contain perturbative terms in the massless
quark limit. The QCD expressions for appropriate polarization

functions can be written in the following form:

�
(1)
V (s) − �

(1)
A (s) =

∑
k≥2

OV −A
2k

(−s)k
(3)

�
(1)
V (s) + �

(1)
A (s) = − 1

2π2 ln
−s

µ2 + higher loops

+
∑
k≥2

OV +A
2k

(−s)k
. (4)

The 2k-dimensional constants O
V,A
2k are the vacuum expecta-

tion values of the operators, constructed from the quark and
gluon fields [5]. They have been computed up to dimension
D = 8. The numerical values of O2k cannot be determined
within the perturbation theory.

Obviously the expressions (3,4) are not valid for all values
of s. Exact polarization operator �(q2) is known to be an
analytical function of s = q2 with a cut along positive real
semiaxes. So it is convenient to study the QCD predictions
(3,4) in the whole complex s-plane. These series are not valid
for small |s|, where effective degrees of freedom are hadrons
rather than quarks. Moreover, the higher loop perturbative
terms in (4) have an unphysical cut starting from some s =
−Q2

0 < 0. The OPE series with a finite number of operators
does not have a cut along positive real semiaxis, but has very
singular behavior at s = 0. Based upon these speculations one
may draw schematic Figure 1, displaying the region of validity
of the series (3,4).

Another drawback of QCD is that these series are likely to
be asymptotic, i.e. divergent for any fixed s. The way to deal
with divergent series is to apply Borel transformation

BM2� = pert. terms +
∑
k≥2

O2k

(k − 1)! M2k
(5)

which improves the convergence by suppressing the higher
terms. It is not clear, whether it improves the perturbative
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series, which is an expansion in inverse powers of ln (−s),
rather than s itself. However the expansion in 1/ ln M2 might
be convergent.

The primary goal of the investigation is to find the numerical
values of input theoretical parameters, such as αs(m

2
τ ) and

few operators of lowest dimensions. We shall compare the
QCD result for the Borel transform (5) of the series (3,4) with
the experimental values, computed by exploiting the analytical
properties of exact polarization functions. In order to separate
the operators from each other, we shall consider the Borel
transform (5) at complex values of the argument M2eiφ . This
can be alternatively understood as the Borel transformation
applied to the polarization function, taken at the angle φ w.r.t.
the real negative semiaxes in the s-plane (see Figure 1. We
shall also try to find the lowest value of the Borel mass M2, at
which the comparison of QCD to the experiment can be made.

2. V − A SUM RULES

We start the analysis from the V −A case (3) which is purely
nonperturbative. The dispersion relation for the difference of
polarization functions does not need subtractions and is written
in the following way:

�
(1)
V (s) − �

(1)
A (s)

= 1

2π2

∫ ∞

0

(v1 − a1)(s
′)

s′ − s
ds′ + f 2

π

s
. (6)

The last term is the kinematic pole which is specific feature of
axial currents. Indeed, the r.h.s. has appropriate asymptotics:
at s → 0 it matches the chiral theory prediction, while the
expansion at s → ∞ starts from the operator of dimension
D = 4, as it should be.

Applying the Borel transformation to (6), one gets the fol-
lowing sum rule:∫ ∞

0
e−s/M2

(v1 − a1)(s)
ds

2π2

= f 2
π +

∑
k≥2

OV −A
2k

(k − 1)! M2k−2 . (7)

One may estimate the numerical values of the operators OV −A

up to dimension 8 from other data:

OV −A
4 = 2(mu + md) 〈q̄q〉 = −f 2

π m2
π

1 GeV2

PT+OPE works

PT+OPE fails

s-plane

-Q0
2

cut

Figure 1: Region of validity of perturbation theory and operator
product expansion

negligible at s ∼ 1 GeV2,

OV −A
6 = −64

9
παs 〈q̄q〉2 ≈ −2 × 10−3 GeV6,

OV −A
8 = 8παsm

2
0 〈q̄q〉2 ≈ 2 × 10−3 GeV8, (8)

where

m2
0 =

〈
qĜq

〉
i 〈q̄q〉 = 0.8 ± 0.2 GeV2 (9)

has been found from barionic sum rules [6]. In the numerical
estimation we assumed mu +md = 12 MeV and αs = 0.5 at 1
GeV2. The factorization hypothesis was used in order to bring
the operators O6,8 to the form (8). It has internal theoretical
ambiguity ∼ 1/N2

c among the D = 8 operators, see [3].
QCD corrections to the operators O6 have been computed

in [7]. They turn out to be large and may increase the effective
contribution of the D = 6 operator by about 50%:

OV −A
6 = −64

9
παs 〈q̄q〉2

[
1 + αs

π

(
1

4
ln

−s

µ2 + c6

)]

≈ −3 × 10−3 GeV6. (10)

The coefficient c6 is ambiguous: two essentially different
choices were presented in [7]. In the numerical estimation
(10) we used a more moderate one c6 = 89/48.

One sees, that the r.h.s. of (7) has a leading term f 2
π

and relatively small (but interesting) contributions of O6,8 at
M2 > 0.5 GeV2. One way to kill f 2

π is to differentiate (7)
by M2. This, however, inevitably increases the errors of the
experimental integral. It seems more effective to perform an-
other trick: one substitutes complex Borel mass M2eiφ into
(7) and takes imaginary part of it. The result is:

∫ ∞

0
e
− s

M2 cos φ sin
( s

M2 sin φ
)
(v1 − a1)(s)

ds

2π2M2

= −
∑
k≥2

sin ((k − 1)φ)

(k − 1)!
OV −A

2k

M2k
. (11)

Let us consider the angle φ = π/3. The operator O8 dis-
appears from the r.h.s. of (11) and only O6 is important in
this case. The l.h.s. of (11) is shown in Figure 2a as a shaded
area (the upper integration limit is m2

τ , since there are no data
beyond this point). The errors have local minimum at the
point M2 = 0.8 GeV2. It happens because the sin (. . .) in
the integral has zero at s = m2

τ and thereby suppresses large
experimental errors. At this point we determine the operator
OV −A

6 and plot the r.h.s. of (11) with this value in Figure 2a
as a dashed line.

Second interesting angle is φ = π/4. Both O6 and O8 con-
tribute, but the next term with O10 disappears. This means that
one may go to lower values of M2 in order to reduce the ex-
perimental uncertainty. Indeed, as can be seen from Figure 2b,
the agreement can be achieved down to M2 = 0.4 GeV2 in
this case. At this point we obtain the most accurate value of
the operator O8.
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Figure 2: Sum rule (11) for φ = π/3 (a) and φ = π/4 (b). Dash lines display OPE prediction with operators (12).

The result of the fit:

OV −A
6 = −(6.8 ± 2.1) × 10−3 GeV6

OV −A
8 = (7 ± 4) × 10−3 GeV8 (12)

(details of the fit and error estimations are discussed in [3]).
The result for O6 is twice larger than our estimation (10). It
might have different explanations: overestimated mu + md ,
failure of factorization, large αs corrections are the few ones
among them. But the mass m2

0, obtained from (12) is in agree-
ment with (9).

3. PERTURBATIVE SERIES

Before analyzing V + A sum rules, we outline the basic
features of perturbative series. The QCD coupling a ≡ αs/π

is a function of the scale Q2, determined by the renormalization
group equation:

da

d ln Q2 = −β(a) = −
∑
k≥0

βka
k+2 (13)

where the factors βk have been computed up to 4 loops in MS
scheme [8]. In particular β0 = 4/9, β1 = 4, β2 = 10.06 and
β3 = 47.23 for 3 flavors. The solution of the RG equation is

ln
Q2

µ2 = −
∫ a(Q2)

a(µ2)

da

β(a)
, Q2 = −s. (14)

Since the integral is convergent at ∞ for any fixed order (at least
with positive βk), the coupling a(s) has unphysical singularity
at some negative s = −Q2

0, see Figure 1. The properties of
the solution of the RG equation can be understood by viewing
Figure 3.

The polarization function is obtained by integrating the
Adler function, which is finite and has been computed up to
N3LO term in MS [9]:

D(Q2) = −2π2 d�(Q2)

d ln Q2

= 1 + a + K2a
2 + K3a

3 + unknown (15)

where K2 = 1.64 and K3 = 6.37 for 3 flavors. In our cal-
culations we shall take the theoretical uncertainty equal to the
contribution of the last term in (15), ±K3a

3. Since we do not
know K4, it is reasonable to use only a 3-loop approximation
also for the β-function in (13).

The polarization function constructed in this way has un-
physical cut from s = −Q2

0 to s = 0. It is an obvious indi-
cation of QCD inapplicability at low |s|. However there are
certain attempts to construct the perturbative functions with
appropriate analytical properties on the whole s-plane, for in-
stance by constructing an analytical QCD coupling with help
of dispersion relation [10] (subtractions assumed):

αs(s)an = 1

π

∫ ∞

0

Im αs(s
′)

s′ − s
ds′

= π

β0

(
1

ln (−s/	2)
− 	2

	2 + s

)
+ . . . . (16)

This way is not unique: one may write down the same dis-
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Figure 4: Correction δ(0) versus αs(m
2
τ ) and αs(m

2
Z

) in the
conventional and analytic approach in the 3-loop approximation.

persion relation for the polarization function �(s)an as well.
At the NLO level the result will be the same as the substitu-
tion of (16) into (15), but it is not the case for higher terms.
In general, the purely logarithmic terms in analytic approach
are the same as in conventional QCD, but the power terms are
different, and there appears D = 2-like term ∼ 1/s, absent in
canonical OPE.

QCD must give correct value of the hadronic τ -decay
branching ration Rτ ∼ 3(1 + δ(0)), which is measured with
rather high accuracy. It is also weakly sensitive to the nonper-
turbative power corrections. The perturbative fractional cor-
rection δ(0) is given by the well-known formula (for example,
[11]):

1 + δ(0) = 1.206 ± 0.010

= 2πi

∮
|s|=m2

τ

ds

m2
τ

(
1 − s

m2
τ

)2 (
1 + 2

s

m2
τ

)
�(s) (17)

where � = �
(1)
V + �

(1+0)
A .

Notice, that the circle integral includes the contribution of un-
physical cut, while in any analytical approach it is thrown away.
The numerical results for (17) in both approaches are shown
in Figure 4. It is seen that the analytical scheme predicts very
large αs(m

2
Z) (at Q2 = m2

Z the difference between both ap-
proaches is not important) and, therefore, fails to agree with
other data. So we shall not consider it anymore.

It follows from Figure 4:

αs(m
2
τ ) = 0.355 ± 0.025. (18)

The error includes the theoretical uncertainty ±K3a
3 of Adler

function. This result is 3-loop, the 4-loop result with the es-
timation K4 = 25 − 50 would give us a slightly less value
within the error range. We notice also, that there is a sec-
ond point on Figure 4 where the conventional curve crosses
the experimental band. However it is unstable under changes
of various perturbative input parameters and prescriptions and
cannot be considered as a reliable one.

4. V + A SUM RULES

The operators OV +A in (4) include purely gluonic conden-
sates. In particular,

OV +A
4 = αs

6π

〈
Ga

µνG
a
µν

〉
. (19)

The D = 4 gluonic condensate has been found from charmo-
nium sum rules [5]:

〈αs

π
G2

〉
= 0.012 GeV4. (SVZ)

The D = 6 operator contains gluonic condensate ∼ 〈
G3

〉
,

which is not known. The quark contribution after factorization
get the form:

OV +A
6 = 128

81
παs 〈q̄q〉2 = (1.3 ± 0.5) × 10−3 GeV6. (20)

For numerical estimation we used our V −A fit (12) and added
an additional error which might occur due to incomplete can-
cellation of two relatively large term in the sum V +A after fac-
torization. The D = 8 operator cannot be obtained from other
data, but we estimate its upper limit as |OV +A

8 | < 10−3 GeV8.
Details given in [4]. So OV +A

6,8 are essentially smaller than

OV −A
6,8 and perturbative terms dominate here.
Now let us define the Borel transform of the polarization

function �V +A:

Bexp(M
2) =

∫ m2
τ

0
e−s/M2

(v1 + a1 + a0)(s)
ds

M2

= Bpt(M
2) + 2π2

∑
k≥2

OV +A
2k

(k − 1)! M2k
. (21)

The perturbative part Bpt is computed numerically:

Bpt(M
2) = iπ

∮
e−s/M2

�pt(s)
ds

M2 .

The integration contour goes counterclockwise from s = m2
τ +

i0 to s = m2
τ −i0 around the cut of the perturbative polarization

function �pt (including the unphysical part).
Since OV +A

8 is small, we shall be concerned with the
D = 4, 6 operators. They can be conveniently separated by
taking the real part of the Borel transform (21) with complex
argument:

Re Bexp(M
2eiφ) = Re Bpt(M

2eiφ)

+2π2
∑
k≥2

cos (kφ) OV +A
2k

(k − 1)! M2k
. (22)

At φ = π/6 the operator O6 disappears and at φ = π/4
there is no O4 in the r.h.s. Figure 5a,b displays both these
possibilities. Vertical bars correspond to Re Bexp, while the
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Figure 5: Sum rule (22) with φ = π/6 (a) and φ = π/4 (b). The dash line is the contribution of the gluonic condensate equal to the central
value of (23) added to the 0.330-perturbative curve.

solid line with shaded area around it, labeled with “0.355”
mark, shows purely perturbative contribution Re Bpt computed
with initial condition αs(mτ ) = 0.355. The same is done for
αs(m

2
τ ) = 0.330, which is the lowest possible value within the

error range (18) (for a reason which will become clear later).
Consider at first φ = π/4. The gluonic condensate

〈
G2

〉
,

and consequently OV +A
4 must be positive. Therefore, the per-

turbative curve must go below the experimental one, if the dis-
crepancy is explained by OPE. However Figure 5a shows, that
the central value of 0.355-theoretical prediction goes above the
experimental band for M2 < 0.9 GeV2. If we forget for a mo-
ment about theoretical uncertainty and assume that the theory
should work for M2 > 0.6 GeV2, as follows from our V − A

analysis, this means that the condensate must be negative. It
rather contradicts our expectations.

But if we take a slightly lower input αs(m
2
τ ), the perturbative

curve will go down. The lowest possible value is 0.330, as
follows from (18). Indeed, in this case the central theoretical
value is below the experimental bars. If one takes some point,
say, M2 = 0.8 GeV2, then the following values of the gluonic
condensate are acceptable:

〈αs

π
Ga

µνG
a
µν

〉
= 0.006 ± 0.012 GeV4

for
αs(m

2
τ ) = 0.330 and M2 > 0.8 GeV2. (23)

Theoretical and experimental errors are added together. In
principle our result (23) does not contradict the SVZ value.
However, in order to achieve it, we must sit at “the very edge
of errors,” which seems unlikely.

Now we turn to φ = π/4, Figure 5b. If OV +A
6 is positive,

as OPE+factorization predict (20), its contribution to the r.h.s.
of (22) must be negative. This however strongly disfavors our
previous choice αs(m

2
τ ) = 0.330, motivated by the sign of the

gluonic condensate. So it seems rather difficult to make both

〈
G2

〉
and D = 6 operator positive simultaneously. Here the

OPE predictions are in certain disbalance with the data.
This is not however a serious disagreement. First, both

OV +A
4 and OV +A

6 are small enough. Available theoretical and
experimental accuracy is about 2–3%, which is not sufficient
to specify the values of both operators or to say something
definite about their signs.

Second, these operators are not rigorously defined objects
in perturbation theory. We do not have an algorithm to find
their values from the first principles. So any statement about
their properties should be considered with care. Moreover,
it is not clear whether one could define them independently
of the perturbative series, to which they are added. In fact,
different prescriptions to separate the so-called perturbative
and nonperturbative terms may lead to different results, at least
at the level of 1%.

5. SUMMARY

1. The V − A polarization operator �
(1)
V −A(Q2) is well

described by OPE series for Q2 ≥ 1 GeV2.

2. The operator OV −A
6 is approximately 2 times larger than

expected from QCD and low energy theorems.

3. The V +A polarization operator �
(1+0)
V +A (Q2) is well de-

scribed by purely perturbative terms for Q2 > 1 GeV2.

4. Current theoretical and experimental accuracy is not suf-
ficient to determine the value of the gluonic condensate〈
G2

〉
. However it is likely to be much lower than com-

monly accepted SVZ value.
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