gdb.info: Frames

Go forward to Backtrace
Go up to Stack
Go to the top op gdb

Stack frames

The call stack is divided up into contiguous pieces called "stack
frames", or "frames" for short; each frame is the data associated with
one call to one function.  The frame contains the arguments given to
the function, the function's local variables, and the address at which
the function is executing.
   When your program is started, the stack has only one frame, that of
the function `main'.  This is called the "initial" frame or the
"outermost" frame.  Each time a function is called, a new frame is
made.  Each time a function returns, the frame for that function
invocation is eliminated.  If a function is recursive, there can be
many frames for the same function.  The frame for the function in which
execution is actually occurring is called the "innermost" frame.  This
is the most recently created of all the stack frames that still exist.
   Inside your program, stack frames are identified by their addresses.
A stack frame consists of many bytes, each of which has its own
address; each kind of computer has a convention for choosing one byte
whose address serves as the address of the frame.  Usually this address
is kept in a register called the "frame pointer register" while
execution is going on in that frame.
   GDB assigns numbers to all existing stack frames, starting with zero
for the innermost frame, one for the frame that called it, and so on
upward.  These numbers do not really exist in your program; they are
assigned by GDB to give you a way of designating stack frames in GDB
commands.
   Some compilers provide a way to compile functions so that they
operate without stack frames.  (For example, the gcc option
     `-fomit-frame-pointer'
   generates functions without a frame.)  This is occasionally done
with heavily used library functions to save the frame setup time.  GDB
has limited facilities for dealing with these function invocations.  If
the innermost function invocation has no stack frame, GDB nevertheless
regards it as though it had a separate frame, which is numbered zero as
usual, allowing correct tracing of the function call chain.  However,
GDB has no provision for frameless functions elsewhere in the stack.
`frame ARGS'
     The `frame' command allows you to move from one stack frame to
     another, and to print the stack frame you select.  ARGS may be
     either the address of the frame or the stack frame number.
     Without an argument, `frame' prints the current stack frame.
`select-frame'
     The `select-frame' command allows you to move from one stack frame
     to another without printing the frame.  This is the silent version
     of `frame'.