Go to the previous, next section.


needs to know the file name of the program to be debugged, both in order to read its symbol table and in order to start your program. To debug a core dump of a previous run, you must also tell the name of the core dump file.

Commands to specify files

The usual way to specify executable and core dump file names is with the command arguments given when you start (see section Getting In and Out of.

Occasionally it is necessary to change to a different file during a session. Or you may run and forget to specify a file you want to use. In these situations the commands to specify new files are useful.

file filename
Use filename as the program to be debugged. It is read for its symbols and for the contents of pure memory. It is also the program executed when you use the run command. If you do not specify a directory and the file is not found in the working directory, uses the environment variable PATH as a list of directories to search, just as the shell does when looking for a program to run. You can change the value of this variable, for both and your program, using the path command.

On systems with memory-mapped files, an auxiliary file `filename.syms' may hold symbol table information for filename. If so, maps in the symbol table from `filename.syms', starting up more quickly. See the descriptions of the options `-mapped' and `-readnow' (available on the command line, and with the commands file, symbol-file, or add-symbol-file), for more information.

file with no argument makes discard any information it has on both executable file and the symbol table.

exec-file [ filename ]
Specify that the program to be run (but not the symbol table) is found in filename. searches the environment variable PATH if necessary to locate your program. Omitting filename means to discard information on the executable file.

symbol-file [ filename ]
Read symbol table information from file filename. PATH is searched when necessary. Use the file command to get both symbol table and program to run from the same file.

symbol-file with no argument clears out information on your program's symbol table.

The symbol-file command causes to forget the contents of its convenience variables, the value history, and all breakpoints and auto-display expressions. This is because they may contain pointers to the internal data recording symbols and data types, which are part of the old symbol table data being discarded inside .

symbol-file does not repeat if you press RET again after executing it once.

When is configured for a particular environment, it understands debugging information in whatever format is the standard generated for that environment; you may use either a GNU compiler, or other compilers that adhere to the local conventions. Best results are usually obtained from GNU compilers; for example, using you can generate debugging information for optimized code.

On some kinds of object files, the symbol-file command does not normally read the symbol table in full right away. Instead, it scans the symbol table quickly to find which source files and which symbols are present. The details are read later, one source file at a time, as they are needed.

The purpose of this two-stage reading strategy is to make start up faster. For the most part, it is invisible except for occasional pauses while the symbol table details for a particular source file are being read. (The set verbose command can turn these pauses into messages if desired. See section Optional warnings and messages.)

We have not implemented the two-stage strategy for COFF yet. When the symbol table is stored in COFF format, symbol-file reads the symbol table data in full right away.

symbol-file filename [ -readnow ] [ -mapped ]
file filename [ -readnow ] [ -mapped ]
You can override the two-stage strategy for reading symbol tables by using the `-readnow' option with any of the commands that load symbol table information, if you want to be sure has the entire symbol table available.

If memory-mapped files are available on your system through the mmap system call, you can use another option, `-mapped', to cause to write the symbols for your program into a reusable file. Future debugging sessions map in symbol information from this auxiliary symbol file (if the program has not changed), rather than spending time reading the symbol table from the executable program. Using the `-mapped' option has the same effect as starting with the `-mapped' command-line option.

You can use both options together, to make sure the auxiliary symbol file has all the symbol information for your program.

The auxiliary symbol file for a program called myprog is called `myprog.syms'. Once this file exists (so long as it is newer than the corresponding executable), always attempts to use it when you debug myprog; no special options or commands are needed.

The `.syms' file is specific to the host machine where you run . It holds an exact image of the internal symbol table. It cannot be shared across multiple host platforms.

core-file [ filename ]
Specify the whereabouts of a core dump file to be used as the "contents of memory". Traditionally, core files contain only some parts of the address space of the process that generated them; can access the executable file itself for other parts.

core-file with no argument specifies that no core file is to be used.

Note that the core file is ignored when your program is actually running under . So, if you have been running your program and you wish to debug a core file instead, you must kill the subprocess in which the program is running. To do this, use the kill command (see section Killing the child process).

load filename

The file is loaded at whatever address is specified in the executable. For some object file formats, you can specify the load address when you link the program; for other formats, like a.out, the object file format specifies a fixed address.

load does not repeat if you press RET again after using it.

add-symbol-file filename address
add-symbol-file filename address [ -readnow ] [ -mapped ]
The add-symbol-file command reads additional symbol table information from the file filename. You would use this command when filename has been dynamically loaded (by some other means) into the program that is running. address should be the memory address at which the file has been loaded; cannot figure this out for itself. You can specify address as an expression.

The symbol table of the file filename is added to the symbol table originally read with the symbol-file command. You can use the add-symbol-file command any number of times; the new symbol data thus read keeps adding to the old. To discard all old symbol data instead, use the symbol-file command.

add-symbol-file does not repeat if you press RET after using it.

You can use the `-mapped' and `-readnow' options just as with the symbol-file command, to change how manages the symbol table information for filename.

info files
info target
info files and info target are synonymous; both print the current target (see section Specifying a Debugging Target), including the names of the executable and core dump files currently in use by , and the files from which symbols were loaded. The command help target lists all possible targets rather than current ones.

All file-specifying commands allow both absolute and relative file names as arguments. always converts the file name to an absolute file name and remembers it that way.

supports SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries. automatically loads symbol definitions from shared libraries when you use the run command, or when you examine a core file. (Before you issue the run command, does not understand references to a function in a shared library, however--unless you are debugging a core file).

info share
info sharedlibrary
Print the names of the shared libraries which are currently loaded.

sharedlibrary regex
share regex
This is an obsolescent command; you can use it to explicitly load shared object library symbols for files matching a Unix regular expression, but as with files loaded automatically, it only loads shared libraries required by your program for a core file or after typing run. If regex is omitted all shared libraries required by your program are loaded.

Errors reading symbol files

While reading a symbol file, occasionally encounters problems, such as symbol types it does not recognize, or known bugs in compiler output. By default, does not notify you of such problems, since they are relatively common and primarily of interest to people debugging compilers. If you are interested in seeing information about ill-constructed symbol tables, you can either ask to print only one message about each such type of problem, no matter how many times the problem occurs; or you can ask to print more messages, to see how many times the problems occur, with the set complaints command (see section Optional warnings and messages).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as at the start of a function or a block of statements). This error indicates that an inner scope block is not fully contained in its outer scope blocks.

circumvents the problem by treating the inner block as if it had the same scope as the outer block. In the error message, symbol may be shown as "(don't know)" if the outer block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur in order of increasing addresses. This error indicates that it does not do so.

does not circumvent this problem, and has trouble locating symbols in the source file whose symbols it is reading. (You can often determine what source file is affected by specifying set verbose on. See section Optional warnings and messages.)

bad block start address patched

The symbol information for a symbol scope block has a start address smaller than the address of the preceding source line. This is known to occur in the SunOS 4.1.1 (and earlier) C compiler.

circumvents the problem by treating the symbol scope block as starting on the previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger than the size of the string table.

circumvents the problem by considering the symbol to have the name foo, which may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn

The symbol information contains new data types that does not yet know how to read. 0xnn is the symbol type of the misunderstood information, in hexadecimal.

circumvents the error by ignoring this symbol information. This usually allows you to debug your program, though certain symbols are not accessible. If you encounter such a problem and feel like debugging it, you can debug with itself, breakpoint on complain, then go up to the function read_dbx_symtab and examine *bufp to see the symbol.

stub type has NULL name
could not find the full definition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got...

The symbol information for a C++ member function is missing some information that recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

could not parse a type specification output by the compiler.

Go to the previous, next section.