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Abstract. Algebraic sub-structuring refers to the process of applying
matrix reordering and partitioning algorithms to divide a large sparse
matrix into smaller submatrices from which a subset of spectral compo-
nents are extracted and combined to form approximate solutions to the
original problem. In this paper, we show that algebraic sub-structuring
can be effectively used to solve generalized eigenvalue problems arising
from the finite element analysis of an accelerator structure.

1 Introduction

Sub-structuring is a commonly used technique for studying the static and dy-
namic properties of large engineering structures [3,6,11]. The basic idea of sub-
structuring is analogous to the concept of domain-decomposition widely used
in the numerical solution of partial differential equations [13]. By dividing a
large structure model or computational domain into a few smaller components
(sub-structures), one can often obtain an approximate solution to the original
problem from a linear combination of solutions to similar problems defined on the
sub-structures. Because solving problems on each sub-structure requires far less
computational power than what would be required to solve the entire problem as
a whole, sub-structuring can lead to a significant reduction in the computational
time required to carry out a large-scale simulation and analysis.

The automated multi-level sub-structuring (AMLS) method introduced in
[1,7] is an extension of a simple sub-structuring method called component mode
synthesis (CMS) [3, 6] originally developed in the 1960s to solve large-scale eigen-
value problems. The method has been used successfully in the vibration and
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acoustic analysis of large-scale finite element models of automobile bodies [7,9].
The timing results reported in [7,9] indicate that AMLS is significantly faster
than conventional Lanczos-based approaches [10, 5].

In [15], we examined sub-structuring methods for solving large-scale eigen-
value problems from a purely algebraic point of view. We used the term algebraic
sub-structuring to refer to the process of applying matrix reordering and par-
titioning algorithms (such as the nested dissection algorithm [4]) to divide a
large sparse matrix into smaller submatrices from which a subset of spectral
components are extracted and combined to form an approximate solution to
the original eigenvalue problem. Through an algebraic manipulation, we iden-
tified the critical conditions under which algebraic sub-structuring works well.
In particular, we observed an interesting connection between the accuracy of an
approximate eigenpair obtained through sub-structuring and the distribution of
components of eigenvectors associated with a canonical matrix pencil congruent
to the original problem. We developed an error estimate for the approximation to
the smallest eigenpair, which we will summarize in this paper. The estimate leads
to a simple heuristic for choosing spectral components from each sub-structure.

Our interest in algebraic sub-structuring is motivated in part by an appli-
cation arising from the simulation of the electromagnetic field associated with
next generation particle accelerator design [8]. We show in this paper that al-
gebraic sub-structuring can be used effectively to compute the cavity resonance
frequencies and the electromagnetic field generated by a linear particle acceler-
ator model.

Throughout this paper, capital and lower case Latin letters denote matrices
and vectors respectively, while lower case Greek letters denote scalars. An n xn
identity matrix will be denoted by I,,. The j-th column of the identity matrix
is denoted by e;. The transpose of a matrix A is denoted by AT. We use ||z|| to
denote the standard 2-norm of z, and use ||z||»r to denote the M-norm defined by
l|z|lar = V2T M. We will use Zpr(z,y) to denote the M-inner product induced
acute angle (M-angle for short) between z and y. This angle can be computed
from cos Zp(z,y) = T My/||z||pl|yllas- A matrix pencil (K, M) is said to be
congruent to another pencil (A, B) if there exits a nonsingular matrix P, such
that A= PTKP and B=PTMP.

2 Algebraic Sub-structuring

In this section, we briefly describe a single-level algebraic sub-structuring al-
gorithm. Our description does not make use of any information regarding the
geometry or the physical structure on which the original problem is defined.
We are concerned with solving the following generalized algebraic eigenvalue
problem
Kz =AMz, (1)

where K is symmetric and M is symmetric positive definite. We assume K
and M are both sparse. They may or may not have the same sparsity pattern.



Suppose the rows and columns of K and M have been permuted so that these
matrices can be partitioned as

ni 2 n3 n1 2o ns3
n [ K1 K3 ni [ My M3

K= n K22 K23 and M = n, M22 M23 ) (2)
ns KIT; K2T3 Ks3 ns MIT; Mg; Mss

where the labels ny, no and n3 denote the dimensions of each sub-matrix block.
The permutation can be accomplished by applying a matrix ordering and par-
titioning algorithm such as the nested dissection algorithm [4] to the matrix
K+ M.

The pencils (K11, M11) and (K22, Ma22) now define two algebraic sub-structures
that are connected by the third block rows and columns of K and M which we
will refer to as the interface block. We assume that ng is much smaller than n,
and ns.

A single-level algebraic sub-structuring algorithm proceeds by performing a
block factorization

K =LDLY, (3)

where

I, K11
L= I, and D= Ko
KLKR KiK' Ing K33
The last diagonal block of D, often known as the Schur complement, is defined
by
K33 = K33 — KgKﬂlKlg — KQTgK2721K23.
The inverse of the lower triangular factor L defines a congruent transformation

that, when applied to the matrix pencil (K, M), yields a new matrix pencil
(K, M):

R . My J/VI/:13
K=L'KL"=D and M=L"'MLT= My Mos |- (4)
ME ME Mss

The off-diagonal blocks of M satisfy
Mig = My — MyK; Ky, for i=1,2.

The last diagonal block of M satisfies

2
Msg = Mg — > (KEK; Mg + MK Kig — KEK MK Kis).

i=1



The pencil (K, M ) is often known as the Craig-Bampton form [3] in structural
engineering. Note that the eigenvalues of (K, M ) are identical to those of (K, M),
and the corresponding eigenvectors T are related to the eigenvectors of the orig-
inal problem (1) through 7 = LT x.

The sub-structuring algorithm constructs a subspace spanned by

kl k2 nsa
ni Sl
S = n2 S2 (5)

ne I,

where S; and Sy consist of k; and ko selected eigenvectors of (Ki1, M) and
(K22, M) respectively. These eigenvectors will be referred to as sub-structure
modes in the discussion that follows. Note that ki and k2 are typically much
smaller than ny and ns, respectively.

__ The approximation to the desired eigenvalues and eigenvectors of the pencil
(K, M) are obtained by projecting the pencil (K, M) onto the subspace spanned
by S, i.e., we seek § and q € RF1+k2+73 gych that

(STKS)q = 6(STMS)q. (6)

It follows from the standard Rayleigh-Ritz theory [12, page 213] that 6 serves
as an approximation to an eigenvalue of (K, M), and the vector formed by z =
L~TSq is the approximation to the corresponding eigenvector.

One key aspect of the algebraic sub-structuring algorithm is that k; can be
chosen to be much smaller than n;. Thus, S; can be computed by a shift-invert
Lanczos procedure. The cost of this computation is generally small compared
to the rest of the computation, especially when this algorithm is extended to a
multi-level scheme. Similarly, because ng is typically much smaller than n; and
ns, the dimension of the projected problem (6) is significantly smaller than that
of the original problem. Thus, the cost of solving (6) is also relatively small.

Decisions must be made on how to select eigenvectors from each sub-structure.
The selection should be made in such a way that the subspace spanned by the
columns of S retains a sufficient amount of spectral information from (K, M).
The process of choosing appropriate eigenvectors from each sub-structure is re-
ferred to as mode selection [15].

The algebraic sub-structuring algorithm presented here can be extended in
two ways. First, the matrix reordering and partitioning scheme used to create the
block structure of (2) can be applied recursively to (K11, Mi1) and (Ka2, Mas) re-
spectively to produce a multi-level division of (K, M) into smaller sub-matrices.
The reduced computational cost associated with finding selected eigenpairs from
these even smaller sub-matrices further improves the efficiency of the algorithm.
Second, one may replace I,, in (5) with a subset of eigenvectors of the interface
pencil (I? 33, J/\/I\gg). This modification will further reduce the computational cost
associated with solving the projected eigenvalue problem (6). A combination of
these two extensions yields the AMLS algorithm presented in [7]. However, we



will limit the scope of our presentation to a single level sub-structuring algorithm
in this paper.

3 Accuracy and Error Estimation

One of the natural questions one may ask is how much accuracy we can expect
from the approximate eigenpairs obtained through algebraic sub-structuring.
The answer to this question would certainly depend on how S; and S, are
constructed in (5). This issue is carefully examined in [15]. In this section, we
will summarize the error estimate results established in [15].

To simplify the discussion, we will work with the matrix pencil (I? , M ), where
K and M are defined in (4). As we noted earlier, (I? M ) and (K, M) have the
same set of eigenvalues. If 7 is an eigenvector of (K, M ), then z = L~7% is an
eigenvector of (K, M), where L is the transformation defined in (3).

If (p;i),v](-i)) is the j-th eigenpair of the i-th sub-problem, i.e.,

Kzz'l)_gz) = ,U/gz) M“’l)J(z) ,

) has been ordered such that

where (v](.i))TM,-iv,(:) =d; k, and B

P <l <<, (7)
then we can express 7 as
Vi Y1
= Va v |, (8)
I’n3 y3

where V; = (v{” vf” ..v{)), and y = (4T, 43, y1)" # 0.

It is easy to verify that y satisfies the following canonical generalized eigen-
value problem

Ay Y1 I, G113 Y1
Ay y2 | = A In, Goas y2 |, 9)
K33 Ys Gﬂ G{g M3s Y3

where A; = diag(ugi),ugi),...,ugfi)), Gis = V;.T]\/J\ig for i = 1,2. This pencil is
clearly congruent to the pencils (I? M ) and (K, M). Thus it shares the same
set of eigenvalues with that of (K, M).

If T can be well approximated by a linear combination of the columns of S,
as suggested by the description of the the algorithm in Section 2, then the vector
y; (i = 1,2) must contain only a few large entries. All other components of y;
are likely to be small and negligible.

In [15], we showed that

leTyil = pa(us™)g'?, (10)



where g(-i) =

i = le] Gizys|, and

pa(w) = (A (w =N (11)

When gj(.i) can be bounded (from above and below) by a moderate constant,

the magnitude of |e] ;| is essentially determined by px (,ugi)) which is called a
p-factor in [15].

It is easy to see that py(u; i
when ,U/g-i) is away from \. For the smallest eigenvalue (A1) of (K, M), it is easy
to show that pAl(,ug.i)) is monotonically decreasing with respect to j. Thus, if
A1 is the desired eigenvalue, one would naturally choose the matrix S; in (5) to
contain only the leading k; columns of V;, for some k; < n;.

If we define h; by

(i)) is large when u(i) is close to A, and it is small

0 for j<k
Ty _ > Fgy
¢ hi = {efyi for k; <j<my (12)

then following theorem, which we proved in [15], provides an a priori error esti-
mate for the Rayleigh-Ritz approximation to (A1, Z1) from the subspace spanned
by columns of S defined in (5).

Theorem 1. Let K and M be the matrices defined in (4). Let (X\;,Z;) (i =
1,2, ...n) be eigenpairs of the pencil (I/(\',j/[\), ordered so that A\ < Ay < --- < A,
Let (01, uy) be the Rayleigh-Ritz approzimation to (A1, T1) from the space spanned
by the columns of S defined in (5). Then

01 — A1 < (An — A1) (AT by + b hy), (13)

. [An — A
sin Z g5 (u1, 1) < N — )\11 \/hThi + hihs, (14)

where h; (1 =1,2) is defined by (12).

Theorem 1 indicates that the accuracy of (6, u;) is proportional to the size of
hThy + hThy, a quantity that provides a cumulative measure of the “truncated”
components in (8).

If px, (,ug-z)) < 7 < 1 holds for k; < j < n;, and if |g](.’)| < ~ for some
moderate sized constant v, we can show [15] that AT hy + hi hs can be bounded
by a quantity that is independent of the number of non-zero elements in h;.

Consequently, we can establish the following bounds:

61— A
——=2 < (A — M)(207), (15)
A
. ~ )\n - /\1
sin Zgp(#1,u1) <4/ M1 V2ar, (16)
A2 — A

where o = v2/4.



We should mention that (15) and (16) merely provide a qualitative estimate
of the error in the Ritz pair (6;,u;) in terms of the threshold 7 that may be
used as a heuristic in practice to determine which spectral components of a
substructure should be included in the subspace S defined in (5). It is clear from
these inequalities that a smaller 7, which typically corresponds to a selection of
more spectral components from each substructure, leads to a more accurate Ritz
pair (01,u1).

4 Numerical Experiment

We show by an example that algebraic sub-structuring can be used to compute
approximate cavity resonance frequencies and the electromagnetic field associ-
ated with a small accelerator structure. The matrix pencil used in this example is
obtained from a finite element model of a six-cell Damped Detuned accelerating
Structure (DDS) [8]. The three dimensional geometry of the model is shown in
Figure 1. The dimension of the pencil (K, M) is n = 5584. The stiffness matrix

Fig. 1. The finite element model corresponding to a 6-cell damped detuned structure.

K has 580 zero rows and columns. These zero rows and columns are produced by
a particular hierarchical vector finite element discretization scheme. Because K
is singular, we cannot perform the block elimination in (3) directly. A deflation
scheme is developed in [15] to overcome this difficulty. The key idea of the defla-
tion scheme is to replace K;' (i = 1,2) with a pseudo-inverse in the congruent
transformation calculation. We refer the reader to [15] for the algorithmic de-
tails. To facilitate deflation, we perform a two-stage matrix reordering described
in [15]. Figure 2 shows the non-zero patterns of the permuted K and M.

We plot the approximate p-factors associated with smallest eigenvalue of the
deflated problem in Figure 3. The approximation is made by replacing Ay (which
we do not know in advance) in (11) with o = min(pgl),p?))/z We showed in
[15] that such an approximation does not alter the qualitative behavior of the
p-factor. Three different choices of 7 values were used as the p-factor thresholds
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Fig. 2. The non-zero pattern of the permuted stiffness matrix K (left) and the mass

matrix M (right) associated with the 6-cell DDS model.

(t = 0.1,0.05,0.01) for selecting sub-structure modes, i.e., we only select sub-
structure modes that satisfy p, (,ug-’)) > 7.

o 500 1000 1500 2000 2500 107 . L . L L
0 500 1000 1500 2000 2500 3000

Fig. 3. The approximate p-factors associated with each sub-structure of the 6-cell DDS
model.

The relative accuracy of the 50 smallest non-zero Ritz values extracted from
the subspaces constructed with these choices of 7 values is displayed in Figure
4.

We observe that with 7 = 0.1, 61 has roughly three digits of accuracy, which
is quite sufficient for this particular discretized model. If we decrease 7 down to
0.01, most of the smallest 50 non-zero Ritz values have at least 4 to 5 digits of
accuragcy.

The least upper bound for gj(-i) used in (10) is v = 0.02. Thus the p-factor
gives an over-estimate of |e] y;| in this case. In Figure 5, we plot |e] y1| and
le]yal, where (yT, 43,53 )T is the eigenvector associated with the smallest non-
zero eigenvalue of (9). For simplicity, we excluded the values of [e] y1| and [e] y2|
corresponding to the null space of (K11, M11) and (K22, May), which have been



Fig. 4. The relative error of the smallest 50 Ritz values extracted from three subspaces
constructed by using different choices of the p-factor thresholds (7 values) for the DDS
model.

deflated from our calculations. We observe that |e]y;| is much smaller than

Po (/Ly)), and it decays much faster than the the p-factor also.
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Fig. 5. The magnitude of €] y1 (left) and e] y» (right), where (y{, 3,3 )" is the eigen-
vector corresponding to the smallest eigenvalue of the canonical problem (9) associated
with the DDS model.

5 Concluding Remarks

In this paper, we discussed the possibility of using algebraic sub-structuring to
solve large-scale eigenvalue problems arising from electromagnetic simulation.
We examined the accuracy of the method based on the analysis developed in
[15]. A numerical example is provided to demonstrate the effectiveness of the
method.

We should point out that the block elmination and congruent transformation
performed in algebraic substructuring can be costly in terms of memory usage.
However, since no triangular solves on the full matrix, which are typically used



in a standard shift-invert Lanczos algorithm, are required, an efficient multi-level
out-of-core implementation is possible. The algebraic sub-structuring method is
most valuable when a large number of eigenvalues are of interest and the desired
level of accuracy is not extremely high. We will discuss the implementation issues
and comparison with other methods in a future study.
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