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Abstract

We point out that current experimental data for partial B → πlν branching fractions
reduce the theoretical input required for a precise extraction of |Vub| to the form-factor
normalization at a single value of the pion energy. Different parameterizations of the
form factor shape leading to this conclusion are compared and the role of dispersive
bounds on heavy-to-light form factors is clarified.

Submitted to Physics Letters B



1 Introduction

Measuring the magnitude of the weak mixing matrix element Vub is important for constraining
the unitarity triangle and testing the standard model of weak interactions. Inclusive and
exclusive determinations from semileptonic B decays have different sources of experimental
and theoretical systematic errors, and provide complementary determinations of this quantity.

Measurements of partial B → πlν branching fractions [1, 2, 3, 4] allow for a qualitatively
distinct approach to extracting |Vub| compared to methods where only the total B → πlν
branching fraction is available. Since the form factor shape is essentially fixed by experimen-
tal data, theoretical input is required only for a normalization of the relevant form factor. This
normalization can be taken at an energy within the range currently studied with precision lat-
tice simulations [5, 6]. In order to implement this program with reliable error estimates, three
sources of uncertainty should be accounted for: first, experimental errors on the magnitudes
of the partial branching fractions; second, theoretical errors for the form-factor normalization;
and third, errors associated with incomplete knowledge of the form-factor shape used in fit-
ting the combined data. While the first two sources are important (and the second of these
is currently the dominant one), they do not pose obvious conceptual difficulties. The focus
here is on the third source of error, and the extent to which the statement that the shape is
“essentially fixed by experimental data” can be quantified.

Bounds on the form factor can be derived via the computation of an appropriately chosen
correlation function in perturbative QCD. By analyticity, the resulting “dispersive bound”
constrains the behavior of the form factor in the semileptonic region [7, 8, 9, 10], and may be
expressed as a condition on the coefficients in a convergent expansion. This paper compares
and relates the class of parameterizations emerging from the dispersive bound analysis to the
class of parameterizations introduced in [11, 12]. Both classes are “exact” in the sense that
the true form factor is guaranteed to be described arbitrarily well by a member of the class.
We show that the determination of |Vub| is robust under the choice of parameterization and
the number of parameters and discuss to what extent the same is true for form factor shape
observables.

2 Form factor parameterizations and extraction of |Vub|

Having restricted the shape of the q2 spectrum, or equivalently, of the form factor, by exper-
imental measurements, the central value and errors for |Vub| are determined by varying the
allowed form factor over all “reasonable” curves that are consistent with the data, and with
a normalization of the form factor taken from theory at a given value (or multiple values) of
q2. Defining this procedure precisely requires specifying a class of curves which contains the
true form factor (to a precision compatible with the data), and which is sufficiently rich to
describe all variations that impact the observables under study. A statistical analysis along
standard lines then determines central values and errors for the desired observable quantities.

A starting point for isolating such a class of curves is the dispersive representation of the
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Figure 1: Experimental data for the partial B̄0 → π+�−ν̄ branching ratios and fit result shown
as solid line. The fit results from (2) with N = 1 and (5) with kmax = 2 are indistinguishable.
Note that the experimental data is binned: [1, 2, 3] give the result in three bins, while [4] gives
the result in five q2-bins. We plot the value and error divided by the bin width at the average
q2-value in each bin. For the three-bin results, we have slightly shifted the points to the left
and right to increase visibility.

relevant form factor:

F+(q2) =
F+(0)/(1 − α)

1 − q2

m2
B∗

+
1

π

∫ ∞

t+

dt
ImF+(t)

t − q2 − iε
. (1)

Here α is defined by the relative size of the contribution to F+(0) from the B∗ pole, and
t± ≡ (mB ± mπ)2. For massless leptons, the semileptonic region is given by 0 ≤ q2 ≤ t−.
Equation (1) states that, after removing the contribution of the B∗ pole lying below threshold,
F+(q2) is analytic outside of a cut in the complex q2-plane extending along the real axis from
t+ to ∞, corresponding to the production region for states with the appropriate quantum
numbers.

One class of parameterizations keeps the B∗ pole explicit and approximates the remaining
dispersion integral in (1) by a number of effective poles:

F+(q2) =
F+(0)/(1 − α)

1 − q2

m2
B∗

+

N∑
k=1

ρk

1 − 1
γk

q2

m2
B∗

. (2)

The true form factor can be approximated to any desired accuracy by introducing arbitrarily
many, finely-spaced, effective poles. In the next section, we derive a bound on the magnitudes
of the coefficients of the effective poles, |ρk|. This allows a meaningful N → ∞ limit, thus en-
abling us to investigate the behavior of the fits when arbitrarily many parameters are included.
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We find that current data cannot yet resolve more than one distinct effective pole in addition
to the B∗ pole. Parameterizations of the above type are widely used to fit form factors. In
particular, a simplified version of the N = 1 case, the so-called Becirevic-Kaidalov (BK) pa-
rameterization [11] is used in many recent lattice calculations and experimental studies. As
shown in [12], this two-parameter form is overly restrictive since it enforces scaling relations
which at small q2 are broken by hard gluon exchange. The size of these hard-scattering terms,
which appear at leading order in the heavy-quark expansion, is subject to some controversy
and constraining their size is an important task. The parameterization of the form factors
should allow for their presence.

Another class of parameterizations is obtained by expanding the form factor in a series
around some q2 = t0 in the semileptonic region up to a fixed order, with the coefficients of
this expansion as the fit parameters. However, the convergence of this simple expansion in the
semileptonic region is very poor due to the presence of the nearby singularities at q2 = m2

B∗

and q2 = t+. An improved series expansion of the form factor that converges in the entire
cut q2-plane is obtained after a change of variables that maps this region onto the unit disc
|z| < 1. In terms of the new variable, F+ has an expansion

F+(q2) =
1

P (q2)φ(q2, t0)

∞∑
k=0

ak(t0) [z(q2, t0)]
k , z(q2, t0) =

√
t+ − q2 −√

t+ − t0√
t+ − q2 +

√
t+ − t0

, (3)

with real coefficients ak. The variable z(q2, t0) maps the interval −∞ < q2 < t+ onto the line
segment −1 < z < 1, with the free parameter t0 ∈ (−∞, t+) corresponding to the value of q2

mapping onto z = 0. Points immediately above (below) the q2-cut are mapped onto the lower
(upper) half-circle |z| = 1. The function P (q2) ≡ z(q2, m2

B∗) accounts for the pole in F+(q2)
at q2 = m2

B∗ , while φ(q2) is any function analytic outside of the cut. It is interesting to note
that this reorganization succeeds in turning a large recoil parameter, (v · v′)max − 1 ≈ 18, into
a small expansion parameter. For example, for t0 = 0 the variable z is negative throughout
the semileptonic region and

|z|max =

√
(v · v′)max + 1 −√

2√
(v · v′)max + 1 +

√
2
≈ 0.5 , (4)

where v and v′ are the velocities of the B and π mesons. The same size, but for positive z
is obtained for t0 = t−. By choosing the intermediate value t0 = t+(1 −√1 − t−/t+), the
expansion parameter can be made as small as |z|max ≈ 0.3. A second class of parameterizations
is obtained by a truncation of the above series:

F+(q2) =
1

P (q2)φ(q2, t0)

kmax∑
k=0

ak(t0) [z(q2, t0)]
k . (5)

As discussed in the next section, it is conventional to take

φ(q2, t0) =

(
πm2

b

3

)1/2(
z(q2, 0)

−q2

)5/2(
z(q2, t0)

t0 − q2

)−1/2(
z(q2, t−)

t− − q2

)−3/4
(t+ − q2)

(t+ − t0)1/4
. (6)

3



0.6 0.7 0.8 0.9 1

2.5

3

3.5

4

4.5

5

0.6 0.7 0.8 0.9 1

2.5

3

3.5

4

4.5

5

F+(16GeV2)F+(16GeV2)

|V u
b
|×

10
3

|V u
b
|×

10
3

0 0.05 0.1 0.15 0.2

2.5

3

3.5

4

4.5

5

�30%

�20%

�10%

0%

10%

20%

30%

0 0.05 0.1 0.15 0.2

2.5

3

3.5

4

4.5

5

�30%

�20%

�10%

0%

10%

20%

30%

|V u
b
|×

10
3

|V u
b
|×

10
3

∆F+/F+∆F+/F+

Figure 2: 68% (dark) and 95% (light) confidence limits for |Vub| determined by fitting the
parameterizations (2) or (5) to experimental data in [1], [2], [3] and [4], with the single lattice
data point F+(16 GeV2) = 0.8± 0.1. Results from (2) and (5) are indistinguishable. The plot
on the right shows |Vub| for fixed F+(16 GeV2) = 0.8 as a function of the relative uncertainty
on the form-factor.

With this choice, a bound
∑

k a2
k � 1 is obtained by perturbative methods. 1 Together with

the restriction |z| < 1, this allows a meaningful kmax → ∞ limit. We find that current data
can only resolve the first three terms in the series (5).

Figure 1 shows the available experimental data on the partial branching fraction dΓ(B̄0 →
π+�−ν̄)/dq2. The CLEO [1], Belle [2] and BaBar [4] collaborations have measured this branch-
ing fraction in three separate q2-bins and BaBar [3] has presented a measurement using
five q2-bins. In order to extract |Vub| we also need the normalization of the form factor
F+(q2). The B → π vector form factors have recently been determined by the Fermi-
lab Lattice [5] and by the HPQCD [6] collaborations in lattice simulations with dynamical
fermions. The preliminary results of these calculations give F+(16 GeV2) = 0.81 ± 0.11 [5]
and F+(16 GeV2) = 0.73 ± 0.10 [6]. 2 The lattice calculations give the form factor at several
different q2-values. However, the correlations between different points are not available and it

1For different t0, the expansion parameters, z ≡ z(t, t0) and z′ ≡ z(t, t′0), and expansion coefficients,
ak ≡ ak(t0) and a′

k ≡ ak(t′0), are related by the Möbius transformation:

z′ =
z(t0, t′0) + z

1 + z(t0, t′0)z
,
√

1 − z2

∞∑
k=0

akzk =
√

1 − z′2
∞∑

k=0

a′
kz′k .

It is easily verified that the sum of squares of coefficients is invariant under such a transformation,
∑

k a2
k =∑

k a′
k
2, as guaranteed by the construction of φ, see (9).

2The parameterization (2) with N = 1 has been used to interpolate to the common q2-point, and for
definiteness the errors are taken as those from the nearest points: q2 = 15.87 GeV2 [5], with statistical and
systematic errors added in quadrature, and q2 = 16.28 GeV2 [6].
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is difficult to quantify the uncertainty on the shape. Here, we do not use any shape informa-
tion from the lattice, and use F+(16 GeV2) = 0.8±0.1 as our default value for the form factor
normalization. Performing a χ2 fit yields |Vub| = 3.7+0.6

−0.5 × 10−3 for both the parameterization
(2) with N = 1, and (5) with kmax = 2. The correlation matrix is included for the data in [1].
For the remaining data, q2-bins are taken as uncorrelated.

Figure 2 shows the 68% and 95% confidence limits for |Vub| as a function of the value
and uncertainty of the form factor at q2 = 16 GeV2. The form factor normalization is the
dominant error in the determination of |Vub|; if the quantity F+(16 GeV2) would be known
exactly, the uncertainty on |Vub| would drop to approximately 6%. The quality of the fit is
equally good for both parameterizations, with χ2 = 12.0. 3 The extracted value of |Vub| is
insensitive to the choice of the free parameter t0. Setting φ(q2) = 1 in (5) also has negligible
impact, and similarly adding more lattice input points does not substantially change the result
if the dominant lattice errors are correlated. The effect of allowing additional terms in the
parameterizations (2) and (5) is investigated in the following sections. We will find that the
result for the value and uncertainty of |Vub| from the simple parameterizations used in this
section is not appreciably altered if additional terms are included in the parameterizations of
the form factor.

3 Form factor bounds

To make a fully rigorous determination of |Vub|, the truncation to the three-parameter classes
of curves considered in the previous section requires justification. For instance, if the neglected
terms in (2) or (5) conspired to produce a sharp peak in the form factor at precisely the value
of the lattice input point, then the integrated rate would be overestimated, and the value of
|Vub| underestimated. To prevent this from happening requires some bound on the perversity
of allowed form-factor shapes.

To bound the coefficients ρk in the expansion (2), we introduce a decomposition of the
integration region, t+ ≤ t1 < · · · < tN+1 < ∞, and define

ρk ≡ 1

π

∫ tk+1

tk

dt

t
ImF+(t) , γk ≡ tk

m2
B∗

. (7)

Since F+(t) ∼ t−1 at large t, it follows that

∑
k

|ρk| ≤ 1

π

∫ ∞

t+

dt

t
|F+(t)| ≡ R , (8)

and this is the desired bound. Assuming the integral in (8) is dominated by states with

t − t+ ∼ mbΛ, where F+ ∼ m
1/2
b , the quantity R is parametrically of order (Λ/mb)

1/2, with

3Note that all three-bin measurements determine the same observable quantities. The minimal χ2 obtained
from the three-bin measurements is 5.0 for 9−3 degrees of freedom. This value measures the (good) agreement
between the three-bin measurements, and should be subtracted from the total in order to obtain a measure of
agreement between the data and the parameterizations. The resulting quality of our fit is good: 12.0− 5.0 for
9 − 4 degrees of freedom.
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Λ a hadronic scale. To be sure that the bound deserves the model-independent moniker, one
should use a very conservative estimate. In our fits we will use R =

√
10 and R = 10.

The coefficients ak in the expansion (5) can be bounded by requiring that the production
rate of Bπ states, described by the analytically continued form factor, does not overwhelm
the production rate of all states coupling to the current of interest (in this case, the vector
current ūγµb). The latter rate is computable in perturbative QCD using the operator product
expansion (see e.g. [10]). The function φ in (6) was chosen such that the fractional contribution
of Bπ states to this rate is given at leading order by

∞∑
k=0

a2
k =

1

2πi

∮
dz

z
|φ(z)P (z)F+(z)|2 =

m2
b

3

∫ ∞

t+

dt

t5
[(t − t+)(t − t−)]3/2|F+(t)|2 < 1 . (9)

Assuming that the integral in (9) is dominated by states with t−t+ ∼ mbΛ, where F+ ∼ m
1/2
b ,

the bounded quantity is parametrically of order (Λ/mb)
3. Since, by definition, the fraction

is smaller than unity, it is conventional to take the loose bound
∑kmax

k=0 a2
k < 1, which does

not make use of scaling behavior in the heavy-quark limit. Clearly this bound leaves much
room for improvement; from its scaling behavior, we expect

∑∞
k=0 a2

k to be of the order of
a few permille. This implies that higher-order perturbative and power corrections in the
operator product analysis introduce negligible error, as noticed in [13]. It is also easy to see
that the dispersive bounds by themselves do not impose tight constraints on the form factor
shape. Since the scale of the coefficients is set by a0 ∼ m

−3/2
b , even with the optimal choice

|z|max ≈ 0.3, the dispersive bounds allow the relative size of higher-order terms in the series,
|akz

k/a0|, to be of order unity up to k ≈ 4, and to contribute significantly for even higher k.
This situation for heavy-to-light decays such as B → π contrasts with that for heavy-heavy
decays such as B → D [14, 15], where the bound is parametrically of order unity (counting
mc ∼ mb 	 Λ). For this case, the scale of the coefficients is set by a0 ∼ m0

b , and with
|z|max ≈ 0.06 the bound ensures that only the first few terms in the series are required for
percent accuracy.

To put the dispersive bounds in perspective, it may be useful to emphasize that establishing
an order-of-magnitude bound on any integral of the form

∫∞
t+

dt k(t)|F+(t)|2 for some k(t) would

yield an equally valid, bounded, parameterization, with a new φ(t) constructed from k(t) as
in (6) and (9). Similarly, bounded pole parameterizations (2) are obtained by establishing an
order-of-magnitude bound on any integral of the form

∫∞
t+

dt k(t)|F+(t)| for some k(t), as in

(7) and (8). Focusing attention on the special case of (6) and (9) is justified only to the extent
that the bound (9) is sufficiently restrictive, and to the extent that similar or tighter bounds
cannot be conservatively estimated by other means.

It is interesting to note that the two bounds are not equivalent. The bound
∑

k |ρk| < R
uses the fact that the asymptotic form factor can be evaluated in perturbation theory, where
the scaling F+(t) ∼ t−1 is found at large t. This condition is not automatically satisfied by
the series parameterization (5), which as seen from (9) requires only F+(t) � t1/2 at large t.
Imposing the proper large-t behavior yields the sum rules

dn

dzn
P (z)φ(z)F (z)

∣∣∣∣
z=1

= 0 ↔
∞∑

k=0

kn akz
k

∣∣∣∣
z→1

= 0 , n = 0, 1, 2. (10)
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To our knowledge, the above sum rules have not been discussed in the literature. On the other
hand, all pole parameterizations “violate” the bound

∑∞
k=0 a2

k < 1 for the simple reason that
the integral in (9) is not well defined for these parameterizations, because F+(t) has poles on
the integration contour.

The bounds discussed here are associated with the behavior of the form factor above thresh-
old. Since we are interested in the form factor in the semileptonic region, these higher-energy
properties are useful only to the extent that they can help to constrain the form factor in this
region. Incorrect high-energy behavior therefore does not imply that a given parameterization
cannot be used to parameterize low-energy data. For instance, the effective poles in (2) could
be smeared into finite-width effective resonances in order to make the integral in (9) converge;
however, the semileptonic data is very insensitive to such fine-grained detail, and this modifi-
cation has a very minor impact on the fits. Similarly, unless the bound (9) is close to being
saturated, the coefficients ak for moderately large k in the series parameterization (5) can
be tuned to satisfy the sum rules (10), or equivalently, to make the integral in (8) converge.
However, the semileptonic data becomes insensitive to terms zk for large k, and again such a
modification has little impact on the fits. Thus, while at some level the bound (8) will con-
strain the parameters in the series parameterization (5), and the bound (9) will constrain the
parameters in the pole parameterization (2), we restrict attention to the constraints imposed
by (8) on the pole parameterization, and by (9) on the series parameterization.

4 Parameterization uncertainty and shape observables

Imposing the bound
∑

k |ρk| < 10, we observe that additional poles in the class of parameteri-
zations (2) have essentially no impact on the central value and errors for |Vub|. Similarly, using
the bound

∑
k a2

k < 1 in (5) we find that the inclusion of higher order terms beyond kmax = 2
has negligible impact on |Vub|. The errors are dominated by the lattice input point, and both
the central value and errors are not changed significantly from the N = 1 or kmax = 2 fits in
the previous section.

In order to isolate the uncertainty on the form factor shape inherent to the data, we show in
Figure 3 the minimum attainable error on |Vub| with present data, assuming exact knowledge
of the form factor at one q2-value. Results are shown for the parameterization (5), using
various bounds

∑
k a2

k < 0.01, 0.1 and 1. As the figure illustrates, points in the intermediate
range of q2 lead to the smallest uncertainty on |Vub|, and for these points, the |Vub| extraction
is not very sensitive to even the order of magnitude of the chosen bound, with the minimum
error varying from approximately 6% to approximately 8% as the bound is relaxed from 0.01
to 1. It should be noted that a better understanding of correlations in the experimental data
would be necessary when probling this level of precision. The curves in Figure 3 are also
indicative of the impact of additional theory inputs. Performing the fits with data points at
different q2-values in addition to the default F+(16 GeV2) shows that a point at q2 = 0 would
require � 10% error to significantly decrease the error on |Vub|, while even exact knowledge of
the form factor at q2 = t− has almost no impact.

In the remainder of this section we consider observables which are more sensitive to the
shape of the form factor and investigate the role played by the bounds in these cases. In par-
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Figure 3: ∆χ2 = 1 region for |Vub| for an infinitely precise form-factor determination at a single
q2-value. The plot assumes that the form factor yields the central value |Vub| = 3.7 × 10−3.
The darkest band is obtained for

∑
k a2

k < 0.01, while the two lighter bands correspond to∑
k a2

k < 0.1 and
∑

k a2
k < 1.

ticular, we extract the form factor and its first derivative at q2 = 0, as well as the residue at the
B∗ pole, which is directly related to the parameter α, as in (1). These quantities are interest-
ing in their own right. The form factor at zero momentum transfer, normalized as |Vub|F+(0),
is an important input for the evaluation of factorization theorems for charmless two-body
decays such as B → ππ. The derivative of the form factor at q2 = 0, conveniently normalized
as (m2

B − m2
π)F ′

+(0)/F+(0), determines the quantity δ measuring the ratio of hard-scattering
to soft-overlap terms in the form factor [12]. Finally, the value of (1 − α)−1 is proportional
to the coupling constant gB∗Bπ. The observable quantities |Vub|F+(0), F ′

+(0)/F+(0) and α
are independent of the form-factor normalization, and hence are determined solely by the
experimental data.

In Tables 1 and 2, we show how the results for the shape observables change when additional
parameters are added into the fit. For the pole parameterization (2) we perform fits with
N = 1, 2 and 3 poles in addition to the B∗ pole. (The case N = 1 was studied in [12].)
To help stabilize the fits, we impose a minimum spacing of the poles γk+1 − γk > 1/N , and
a maximum pole position, γk < N + 1. For the polynomial parameterization (5), we set
kmax = 2, 3 and 4. We perform each of the fits with two different bounds — a loose model-
independent bound, and a more stringent bound that relies on the scaling behavior of the
bounded quantity in the heavy-quark limit. Given a value of the bound, a central value and
errors are determined by taking the limit of large N in (2), or large kmax in (5). The sequence
converges once the size of the neglected terms is constrained by the bound to lie below the
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bound
∑

k |ρk| = 10
∑

k |ρk| =
√

10

N 1 2 3 1 2 3∑
k |ρk| 1.02 1.36 10 1.02 1.36

√
10

χ2 11.97 11.96 11.58 11.97 11.96 11.80

103|Vub|F+(0) 0.93+0.06
−0.09 0.93+0.11

−0.09 0.87+0.14
−0.12 0.93+0.06

−0.09 0.93+0.10
−0.09 0.91+0.11

−0.10

(m2
B−m2

π)F ′
+(0)

F+(0)
1.3+0.4

−0.1 1.3+0.4
−0.7 2.0+0.9

−1.2 1.3+0.4
−0.1 1.3+0.4

−0.6 1.5+0.6
−0.8

(1 − α)−1 5+5
−3 6+6

−5 6+20
−15 5+5

−3 6+6
−5 6+6

−8

Table 1: Fit results for form factor shape parameters using the pole parameterization (2).

sensitivity of the chosen observable.
The quantities |Vub|F+(0), F ′

+(0)/F+(0) and α exhibit different sensitivities to the bounds.
This is to be expected, since sharp bends in the fitted curve at the endpoints allowed by the
additional terms can have strong effects on the slope, or on the residue of the B∗ pole, but
are not constrained tightly by the data. Imposing only very loose bounds therefore leads to
large uncertainties for these quantities.

It is instructive to examine the relation between observables and expansion coefficients.
At t0 = 0 the quantities f(0), α, β and δ in [12] are related to the coefficients ak by

f(0) ≡ F+(0) =
16a0

m̂b

(
3

π

)1/2
(1 + m̂π)5/2

(1 +
√

m̂π)3

1 + m̂π + ∆̂

1 + m̂π − ∆̂
,

1 + β−1 − δ ≡ m2
B − m2

π

F+(0)

dF+

dq2

∣∣∣∣
q2=0

=
−a1

4a0

1 − m̂π

1 + m̂π
+

3

4

1 −√
m̂π

1 +
√

m̂π

+
∆̂(1 − m̂π)

(1 + m̂π)2 − ∆̂2
, (11)

(1 − α)−1 =
(1 + m̂π + ∆̂)2(1 +

√
m̂π)3

4(1 + m̂π)2(∆̂ + 2
√

m̂π)3/2

∞∑
k=0

ak

a0

(
(−1)

1 + m̂π − ∆̂

1 + m̂π + ∆̂

)k

,

where ∆2 ≡ (mB + mπ)2 − m2
B∗ , and hats denote quantities in units of mB. From the heavy-

quark scaling laws for the quantities appearing on the left-hand side, it follows that a0 ∼ m
−3/2
b ,

a1 ∼ m
−3/2
b , and that the sum in the last line scales as ∆̂−1/2 ∼ m

1/4
b .

5 Results and discussion

In order to extract the most precise value of |Vub|, it is important to make full use of the
existing experimental data for B → πlν that determines the form factor shape. To emphasize
this point, the analysis was done here using no shape information at all from theory, but only
a normalization at one q2-point. Our results make it clear that the limiting factor in the
determination of |Vub| is currently the form factor normalization, with very small uncertainty
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bound
∑

k a2
k < 1

∑
k a2

k < 0.01

kmax 2 3 4 2 3 4∑
a2

k 0.003 0.3 1 0.003 0.01 0.01

χ2 12.0 11.7 11.7 12.0 11.9 11.9

103|Vub|F+(0) 0.93+0.10
−0.10 0.87+0.15

−0.15 0.87+0.14
−0.14 0.93+0.10

−0.10 0.92+0.11
−0.10 0.92+0.11

−0.10

(m2
B−m2

π)F ′
+(0)

F+(0)
1.3+0.6

−0.5 2.0+1.4
−1.4 2.0+1.4

−1.4 1.3+0.6
−0.4 1.4+0.6

−0.6 1.5+0.6
−0.6

(1 − α)−1 6+2
−2 13+8

−14 9+20
−17 6+2

−2 7+2
−5 8+2

−6

Table 2: Fit results for form factor shape parameters using the series parameterization (5)
with t0 = 0.

associated with the form factor shape. Similar conclusions are implicit in other recent works.
For example, in [13] the reduction in error compared to methods employing only total exper-
imental branching fractions is due almost entirely to the inclusion of shape information from
experiment, and not to the inclusion of additional theory input points, or to the use of dis-
persive bounds. In [16], shape information from experiment is used to constrain the hadronic
input parameters appearing in sum rule estimates of the form factor.

In practical terms, the parameterizations (2), with N = 1, and (5), with kmax = 2, are
sufficient for describing the current generation of semileptonic data, in the sense that the
addition of more parameters does not significantly improve the fits. For “global” quantities
like |Vub| it is possible to show by imposing only the loose bounds

∑
k |ρk| < 10 in (2), or∑

k a2
k < 1 in (5) that the extracted values are insensitive to the addition of more parameters.

With a single lattice input value F+(16 GeV2) = 0.8 ± 0.1,

|Vub| = 3.7 ± 0.2 +0.6
−0.4 ± 0.1 = (3.7 ± 0.2) × 0.8

F+(16 GeV2)
,

F+(0) = 0.25 ± 0.04 ± 0.03 ± 0.01 = (0.25 ± 0.04) × F+(16 GeV2)

0.8
.

(12)

The first error is experimental, the second is theoretical from the lattice input, and the third
is due to the uncertainty in the form factor shape. For definiteness, the central values in
(12) are obtained using the parameterization (5) with

∑
k a2

k < 0.01, and the third error is
very conservatively estimated by adding the maximum variation of the boundaries of the 1σ
interval induced by relaxing the bound to

∑
k a2

k < 1.
For less global quantities, like the slope of the form factor at q2 = 0, the bound (9) is not

sufficient to tightly constrain the impact of arbitrarily many additional parameters. In this
case we find

103|VubF+(0)| = 0.92 ± 0.11 ± 0.03 ,

(m2
B − m2

π)
F ′

+(0)

F+(0)
= 1.5 ± 0.6 ± 0.4 , (13)
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(1 − α)−1 = 8 +2
−7 ± 7 .

The first error is experimental, and the second is due to uncertainty in the form factor shape
(these quantities are independent of the form factor normalization). The latter error is esti-
mated by adding the maximum variation of the boundaries of the 1σ interval when the bound
is relaxed to

∑
k a2

k < 0.1.
While the dispersive bound approach provides an elegant means of demonstrating for-

mal convergence properties with the minimal assumption of form-factor analyticity and the
convergence of an operator product expansion, some caution is required in order to avoid
misinterpreting the results. Firstly, for certain observables, e.g. |Vub|, the fits are much more
tightly constrained by the data than by the dispersive bounds. This leads to the happy con-
clusion that the errors on |Vub| do not depend on the chosen parameterization or the exact
value of the bound, and the analysis lends itself to a straightforward statistical interpretation.
Secondly, other important observables, such as the slope of the form factor, are sensitive to
the addition of more parameters than can be constrained by the data, but are allowed by the
dispersive bound. Since this bound is overestimated, presumably by orders of magnitude, a
reliance on this procedure would lead to the pessimistic conclusion that almost no information
at all can be extracted from the data for these quantities. In such cases, we propose to use
tighter bounds, which follow from the scaling behavior of the bounded quantity in the heavy
quark limit.

Apart from establishing order-of-magnitude estimates for the bounds in (8) and (9) by
heavy-quark power counting, none of the above analysis relies on heavy-quark, large-recoil
or chiral expansions, or on the associated heavy-quark, soft-collinear or chiral effective field
theories. However, the semileptonic data can be used to test predictions from these effective
field theories, and to determine low-energy parameters that can be used as inputs to the
calculation of other processes. For example, using the experimental result Br(B− → π−π0) =
(5.5 ± 0.6) × 10−6 [17] together with |Vub|F+(0) from (13), we find

Γ(B− → π−π0)

dΓ(B̄0 → π+�−ν̄)/dq2|q2=0

= 0.76 +0.22
−0.18 ± 0.05 GeV2 , (14)

where the first error is experimental, and the second is due to the form-factor shape uncertainty
in (13). Such ratios provide a strong test of factorization [18]. The leading-order prediction
for this ratio, corresponding to the “naive” factorization picture where hard-scattering terms
are neglected, yields 16π2f 2

π |Vud|2(C1 + C2)
2/3 = 0.62 ± 0.07 GeV2. The uncertainty includes

only the effects of varying the renormalization scale of the leading-order weak-interaction
coefficients [19] between mb/2 and 2mb. This may be compared to the prediction of Beneke
and Neubert [20] who use QCD factorization theorems for two-body decays to work beyond
leading order and include the effects of hard-scattering terms, obtaining for the same ratio,
0.66 +0.13

−0.08 GeV2. The uncertainty in their prediction is dominated by the uncertainty in the
light-cone distribution amplitudes (LCDAs) of the B- and π-mesons. Bauer et al. [21, 13]
evaluate the same factorization theorems using a different strategy: they use experimental
results for other B → ππ decays to determine the part involving the LCDAs from data, which
is possible if all power corrections, and perturbative corrections of order αs(mb), are neglected.
For the ratio (14) they find 1.27+0.22

−0.29 GeV2, where we display only experimental errors. The
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semileptonic data provides important information on otherwise poorly constrained hadronic
parameters entering these processes.

As a second example, the parameter δ measuring the relative size of hard-scattering and
soft-overlap contributions in the B → π form factor can be related to the slope of the form
factor at q2 = 0 [12]. Extrapolated to zero recoil, the lattice calculations in [5, 6] give for the
slope of the F0 form factor, β ≡ [(m2

B − mπ)2F ′
0(0)/F+(0)]−1 = 1.2 ± 0.1. Together with (13)

this yields

δ ≡ 1 − m2
B − m2

π

F+(0)

(
dF+

dq2

∣∣∣∣
q2=0

− dF0

dq2

∣∣∣∣
q2=0

)
= 0.4 ± 0.6 ± 0.1 ± 0.4 , (15)

where the first error is experimental, the second is theoretical from the lattice determination of
β, and the third is due to the form factor shape uncertainty in (13). Establishing the relative
size of the hard-scattering and soft-overlap contributions from the semileptonic data provides
another important input to factorization analyses of hadronic B decays. The above result for
δ does not unambiguously establish δ �= 0 which signals the presence of hard-scattering terms,
but it disfavors the opposite scenario, δ ≈ 2, where the form factor is completely dominated
by hard-scattering. More data will help reduce both the experimental and shape-uncertainty
errors for this quantity.

As a third example, the form factor F+(0) and shape observable α determine the coupling
constant gB∗Bπ via

fB∗gB∗Bπ

2mB∗
≡ F+(0)

1 − α
= 2.0 +0.6

−1.6 ± 0.2 ± 1.7 , (16)

where the first error is experimental, the second is theoretical from the lattice form factor
normalization, and the final error is due to the form factor shape uncertainty, determined as
in (13). Since the semileptonic data is concentrated at small q2, it is not very sensitive to the
detailed structure of the sub-threshold pole and dispersive integral in (1). In fact, the data
do not yet definitively resolve a distinct contribution of the B∗ pole, although the opposite
scenario — dominance by the B∗ pole in (1) — is ruled out [12].

Our implementation of the bounds in (8) and (9) could be formalized in terms of stan-
dard methods of constrained curved fitting [22]. In this language, we have enforced a “prior”
probability function which is constant if the parameters obey the bound on

∑
k |ρk| or

∑
k a2

k,
and zero otherwise. For simplicity, we then performed a χ2 fit, assuming sufficient statistics
that the data is Gaussian distributed. The resulting error estimates should be conservative.
Firstly, this prior allows equal probability for parameter values which are near the bound, even
though we expect that such values become increasingly unlikely. Other prior functions may
be considered — for example, in the case of the series parameterization (5), a Gaussian prior
on the variable (− log10

∑
k a2

k), with mean and standard deviation of order unity. Secondly,
in estimating errors based on ∆χ2, we neglect the fact that bounds enforce restrictions that
renormalize the probability distributions, and to the extent that the bounds are relevant, this
tends to overestimate errors. As a simple example, if an absolute bound happened to coin-
cide with the boundary of the “1σ” interval obtained for an observable based on ∆χ2 = 1,
we would estimate that the observable was within the interval with only ∼ 68% confidence,
whereas the bounds guarantee this with 100% confidence. In a more refined analysis, a direct
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evaluation of the statistical integrals could account for such boundary effects. An alternative
procedure employed in [9], and generalized in [23] to include shape information from experi-
ment, has a slightly more complicated statistical interpretation. Here theory information on
the form factor, combined with the dispersive bounds, is used to generate a statistical sample
of “envelopes”, each consisting of the curves defined at each q2-point by the minimum and
maximum values that the form factor can take. (Note that some curves may be ruled out by
the bounds, yet allowed by the envelopes, which are generated by extremizing point-by-point
in q2.) This sample of envelopes is then combined with experimental branching fractions to
determine a distribution for |Vub| or other observables. Working in terms of parameters ak

allows the experimental and lattice data to be treated on the same footing, and yields a more
straightforward interpretation of the constraints enforced by the bounds.

Fortunately, these complications play an extremely minor role in the case of |Vub|. As
illustrated by Figure 1, the errors are very nearly Gaussian, and nearly identical results are
obtained using different parameterizations, and widely different values for the bounds. A more
refined statistical analysis might be useful for those shape observables that show sensitivity
to the bounds, to extract as much information as possible from the experimental data. The
methodology employed here for |Vub| and other parameters in semileptonic B decays can be
validated in the analogous situation of semileptonic D decays, where experiment and lattice
cover the entire range of q2. We only used lattice input for the form factor at a single q2-value,
to emphasize the conclusion that the shape is determined by experiment; however, studying
the form-factor shape provides an important test of lattice calculations. Our results show that
with improved lattice data, an exclusive measurement of |Vub| that rivals or even surpasses the
inclusive determination is possible.
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