EMC Background Simulation

Steven Robertson

McGill
Context

- **EMC background simulation used for background studies** during detector commissioning and initial startup phases
- **Very little actual data available to validate studies**
- **Primary issues were:**
 - Locating and characterizing background “sources” (apertures, background types)
 - Characterizing beam background effects (rates, distribution patterns etc)
 - Disentangling effects of electronics noise, calibration issues, hot towers etc
 - Determining a reasonable digi energy threshold for EMC operation
 - Radiation dose
Background simulation

- Based on TURTLE ray simulation of Brem and Coulomb lost particle backgrounds (T. Fieguth)
 - Primary particles interacting with machine apertures within +/-8m of the IP are considered background sources
 - Allows determination of original particle source and type, as well as impact point

- Background candidates then tracked by GEANT3 (bbsim) detector simulation
 - Some known issues!
 - Detector model
 - Some discrepancies between IR models used by TURTLE and bbsim
 - Hadronic interactions?

- GEANT simulation modeled the IR out to the end of Q5 magnets
Background simulation
Background sources

- When a beam background particle interacts in the EMC, record the location of the initial (GEANT/TURTLE) “hit” in the beampipe
 - Weight according to known pressure profile in IR and around the ring
 - Categorize backgrounds according to type

HER initial hit position

LER initial hit position
Background sources (cont)

- Estimate pressure-zone contributions to the EMC occupancy rate
 - F.O.M. is number of digits above your favourite energy threshold
 - Give feedback to PEP-II
 - Zone 8 is the total rate

400mA HER, Best Guess pressure

800mA LER, Best Guess pressure
Occupancy rate predictions

- Use beam current dependence of pressure profile to extrapolate background rates as a function of currents
 - Once we had actual data from dedicated beam backgrounds then the simulation became less important, but still useful:

![Graphs showing Emc digi multiplicity (E>5MeV)]
Energy and angular distributions

- Background simulation also correctly predicted (qualitatively!) the characteristic energy and angular distributions of backgrounds

Digi energy distribution

Digi phi distribution

EMC crystal energy (GeV)
Radiation dose

- Total radiation dose rate can be estimated from flux rate of backgrounds
 - Assume some reasonable pressure profile and beam currents
 - Reproduces observed doses reasonably well

- Simulation predicted that LER backgrounds irradiate the endcap from the upstream (LER) side, leading to a sheltered region in the forward barrel
Problems (future improvements?)

- Most predictions from simulation were qualitative
- Issue of IR modeling discrepancy between GEANT and TURTLE made it difficult to trust predictions
- Many interesting effects in data were not well modeled (or modeled at all)
 - Material model/shielding
 - Beam-wall/inelastic interactions
 - No rad-fet/leakage current simulation
 - Injection backgrounds (also Touschek for SuperBaBar)?
 - No modeling of “Lumi” contribution (thought to be zero-angle radiative Bhabhas)
- Need updated TURTLE ray deck and GEANT4 simulation of IR well past Q2

September 23, 2003
Steven H. Robertson,
McGill University