Outline of Simulation Strategy

- Goals & priorities
- Turtle-level studies
- GEANT-level simulation
- Confronting simulations with data

W. Kozanecki, CEA-Saclay
Background simulations: why?

- **2 themes...**
 - validate IR upgrade design (overarching priority)
 - make sure that what we install in ’05 does not suffer from built-in flaws...
 - ...at least for those processes we can calculate (SR, beam-gas)
 - understand / improve backgrounds in present machine

- **...that are intimately intertwined**
 - validation requires credibility
 - update “old” simulations to incorporate what we learnt
 - simulations of present machine/detector configuration better get the ‘right’ answer (when confronted with measurements)...
 - ...if we want to believe predictions for the upgraded IR
 - improve those backgrounds we canNOT calculate
 - both for today’s and for tomorrow’s sake!

- **Essential that the SVT community be (even more) deeply involved in this effort!**
Architecture of background simulations (1)

- **Synchrotron Radiation**
 - MAGBENDS / QSRAD: stand-alone programs
 - SR background calculations: an intrinsic component of IR re-design
 - shouldn’t these be interfaced to GEANT?

- **Beam-gas**
 - step 1: LP-TURTLE transports particles around 1 ring turn
 - full model of ring optics (treated as transport line)
 - start with ‘nominal’ beam at IP
 - beam-gas scattering randomly around ring (bremsstrahlung or Coulomb scattering) \(\rightarrow \) transport ‘secondaries’ (\(\varepsilon' \), \(\gamma \))
 - simplified model of IR apertures (simple geometry, no showering!)
 - those particles lost ‘near’ the IP are
 - saved @ scoring plane
 - input to step 2
 - step 2: full GEANT simulation of detector + near-IR (+- 8.5 m)
 - see Mario Bondioli’s talk
Lost-particle backgrounds

- Coulomb scattering in Arcs (y-plane)
- e⁻ Bremsstrahlung in last 26 m (x-plane)

Normalized to:
- uniform pressure profile of 1 nT
- 1 A beam current
The “Background Zones” reflect the combined effect of:

- beam-line geometry (e.g. bends)
- optics at the source and at the detector
- aperture restrictions, both distant (good!) & close-by (bad!)

Zone 1

Bremsstrahlung in field-free region

Zone 2

Bremsstrahlung

Zone 3

Bremsstrahlung in Arcs

Zone 4

Coulomb scattering in Arcs
Benchmarking of simulations: comparing “predicted” and measured background levels

- **Radiation patterns**
 - for a given sensor type: independent of absolute calibration
 - among different sensors: compare fractional derivatives

- **Absolute background levels**
 - sensor calibration!
 - absolute pressure profile!

- **Global consistency/sanity checks**
 - operational experience in MCC
Pressure-bump experiment: NEG heating in BaBar straight

- Create localized P-bumps
 - NEG heating
 - DIPS on/off
- Measure response of background monitors
- Compare relative measured & simulated monitor response to validate Monte Carlo

Abort diode signal (mR/s)

Heated NEG at -60 m

Different regions

- diff. patterns
- diff. abs. levels

Heated NEG at -8 m
Understanding the absolute level of HER backgrounds (Sep 99)

Compare measured & predicted dose rates in HER:

- Monte Carlo lost-particle simulation (Turtle + BBSIM) validated by p-bump experiments
- Computed pressure profile in detector straight section (N₂-equivalent, not vac.-gauge units!)
- Average ring pressure (from lifetime) for arcs & distant straights

<table>
<thead>
<tr>
<th>HER pressure model</th>
<th>Zone</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (m)</td>
<td></td>
<td>4 to 26</td>
<td>26 to 42</td>
<td>42 to 66</td>
<td>66-2200</td>
</tr>
<tr>
<td>P_base (nT)</td>
<td></td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.43</td>
</tr>
<tr>
<td>P_dyn (nT)</td>
<td></td>
<td>2.8</td>
<td>1.2</td>
<td>6.8</td>
<td>3.4</td>
</tr>
</tbody>
</table>

BW diode: measured vs. predicted background

Abort diodes: msv/predicted HER background ratio (400 mA)
Architecture of background simulations (2)

- **Beam-beam**
 - full simulation of beam-beam tails impractical
 - focus on collimation studies
 - optimize collimator placement/relocation (SM)
 - understand main characteristics of collimator secondaries (HB)
 - provide guidance for machine experiments
 - use Turtle machinery

- **Strategy considerations**
 - improve/update description of magnetic fields & apertures (TF, GC)
 - many fundamental features easier to understand at Turtle level
 - first round of IR-upgrade design validation will be done this way (RB)
 - GEANT-level simulation essential (MB, GB, GC)
 - to benchmark computations against data
 - to make sure there are no “alligators” hiding in new design
 - absolute background predictions always suspect
 - even when benchmarked against experiments. However...
 - ...ratios (new design / present machine) much more reliable.