Photon Quality Measure

Debbie Bard
University of Edinburgh
djbard@slac.stanford.edu
Outline

Aim: Find a measure of photon quality using combination of EMC variables
(The Study Formerly Known as ’Splitoffs’)

• MC sample, choice of discriminant
• Description of NN inputs
• Description of NN outputs
• Construction of photon quality measure
• It works!
• Implementation
• Future possibilities
Method

- Working in analysis-21
- 500000 generic $B\bar{B}$ MC events used to train discriminator
- At Beta level, iterate over CalorNeutralList, if entry truthmatched to photon, call it 'signal', otherwise it’s 'background'.
- Tested Fisher discriminant and neural net, NN by far the superior discriminator
- Use root function TMultiLayerPerceptron
 - default constructor (stochastic minimisation)
 - 1 hidden layer with 5 neurons
 - 50 training cycles

NN inputs

- Use 6 cluster-shape variables as inputs to the NN, plus distance of closest approach of nearest track ('nearest' measured by doca)
- If \(\text{doca} > 50 \text{cm} \), set \(\text{doca} = 50 \text{cm} \)
- Ecal a very useful discriminator, but don’t want to use it as direct input due to energy bias, \(\therefore \) train NN separately in ecal bins.
 - 50 MeV bins up to 0.5 GeV
 - 100 MeV bins 0.5-1 GeV
 - 200 MeV bins 1-2 GeV
 - 500 MeV bins 2-3.5 GeV
 - 3.5 GeV+
- Plots of input variables from generic $B\bar{B}$ MC

signal (photons) and background (non-photons)
s1s9, s9s25

lateral moment, second moment TP

Debbie Bard, University of Edinburgh
absZernike20, absZernike42

doca, ecal
NN outputs

Neural Net outputs and efficiency (x) vs purity (y) plots for some example ecal bins.

signal (photons) and background (non-photons)

ecal 0.05-0.1 GeV

![NN output](image)

*e cal 0.25-0.3 GeV

![NN output](image)
ecal 0.5-0.6 GeV

NN output

Efficiency:purity

ecal 1.0-1.2 GeV

NN output

Efficiency:purity

ecal 1.8-2.0 GeV

NN output

Efficiency:purity

Debbie Bard, University of Edinburgh
Photon Quality Measure

- As the NN varies from ecal bin to bin, raw NN output not suitable for quality measure.
- Instead, use proportion of signal remaining if you were to cut at that value of NN output.
- Signal shape doesn’t change much in different MC samples, but backgrounds do.

For example ecal bin 100-150 MeV.

Signal NN output, background NN output, photon quality output function.
Plot of photon quality measure for all ecal energies (binned in NN output)

truthmatched photons, non-photons.
it’s a Good Thing

Comparison of performance of LAT cut alone compared to cut on NN-based photon quality measure, over all ecal bins.

NN measure, LAT cut alone, LAT cut with LAT!=0

<table>
<thead>
<tr>
<th>effpuri</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean x</td>
<td>0.8391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean y</td>
<td>0.2095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS x</td>
<td>0.261</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMS y</td>
<td>0.2474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>20</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Integral</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For low (<200MeV) ecal energies quality measure is better than LAT alone:

At high ecal energies (ecal>2GeV), measure only slightly better than LAT alone:

Also, measure takes account of LAT=0 problem.
Implementation

(working in 16.0.1a)

- Some debate as to appropriate home for this
- EmcPid package - EmcPid/EmcNNPhotonQuality
- Based on EmcPid/EmcPhotonIdentifier.hh
- Nearly finished coding
- What to use for likelihood/consistency inputs?
- Need to validate/test on various MC, data
- How will people access it in your average Beta job?
Conclusion

- Study very nearly finished

- Measure is useful - should be used

- We may want NN without doca also, usage depends on analysis

- Possibly could be basis of photon list