Calls of EmcCluster::where() and EmcDigi::where()
(intercepted during 8.8.1a Bear execution on single muon MC)

1) EmcMake2dCluster → EmcCluster::sortDigis – calls EmcCluster::where() through theta() and phi()
 (arranges digis in increasing distance from cluster center)

2) EmcTrackMatch → EmcBGFilterTrkMatchMethod::matchEmcToTracks – calls EmcCluster::where()
 (cluster – track matching, change of performance?)

3) RecoEventSelector → EmcXClMoments::EmcXClMoments
 // HepPoint cl(myCluster().where());
 HepPoint cl(myCluster().gravWhere(&myCluster()));
 // Hep3Vector diff = digi->where() - myCluster().where();
 Hep3Vector diff = digi->where() - cl;
 (if we don’t want to change this module we need to keep digi->where() to report the front center)
Calls of EmcCluster::where() and EmcDigi::where()
(continued)

4) RecoEventSelector → AbsRecoCalo::fourMomentum – calls EmcCluster::where()
 (direction of the 3-momentum will be changed, hopefully – improved)

5) EmcTrkClMatch → EmcGeomTrkClMatchMethod::matchEmcToTracks – calls EmcCluster::where()
 (again cluster-trk matching, don’t know why)

6) EmcTrackMatch → EmcGeomTrkMatchMethod::matchEmcToTracks – calls EmcCluster::where()
 (bump – trk matching, performance shown on last pages)
Calls of EmcCluster::where() and EmcDigi::where()
(continued)

7) EmcIdentify → EmcClusterMoments::secondMomentTP
 double clusTheta = myCluster().theta();
 double clusPhi = myCluster().phi();
 EmcDigi* current;
 double dt = current->thetaReal() - clusTheta;
 double dp = EmcCluster::findPhiDiff(current->phiReal(),clusPhi);
 (currently thetaReal() and phiReal() return the front face center angles, while
 clusTheta and clusPhi will be the angles of the depth reconstructed cluster
 center)
 Change to:
 double dt = current->thetaReal(Eclus) - clusTheta;
 double dp = EmcCluster::findPhiDiff(current->phiReal(Eclus) ,clusPhi);
 (one justification for implementing the method at digi level rather than
 cluster level)
Calls of EmcCluster::where() and EmcDigi::where()
(continued)

8) EmcPidHist → EmcCluster::where()

9) LoadRecoBtaCandidates → EmcCluster::where()

10) BtaSelectCandBase → EmcCluster::where()

11) EmcOprQAHist calls EmcCluster::where(), EmcCluster::theta(),phi() and EmcDigi::thetaReal(),phiReal()

(don’t know what these do and how they will be affected)
E-dependent method - implementation at Digi level in 8.8.1a based test release

1) New EmcDigi member functions:
 const HepPoint EmcDigi::where(double Eclus) const
double EmcDigi::thetaReal(double Eclus) const // returns where(Eclus).theta()
double EmcDigi::phiReal(double Eclus) const // returns where(Eclus).phi()

2) New member function in EmcClusterLogPos
 HepPoint EmcClusterLogPos::privateDepthWhere(const EmcCluster* me)
 (utilizes EmcDigi->where(Eclus) to calculate the centroid)

3) In EmcCluster
 New private data members:
 - HepPoint (*_algorithm) (const EmcCluster*); //replaces algPoineter()
 - CentroidMethod _whereType; // will need this in EmcClusterMoments

 Enum CentroidMethod {gravity,logarithmic,neighbor,logdepth,Default};

 New member function:
 - int EmcCluster::whereType() const // returns _whereType

V. Koptchev Umass - Amherst
E-dependent method implementation at Digi level in 8.8.1a based test release
(continued)

4) In EmcClusterMoments do either

 double dt = current->thetaReal() - clusTheta;
 double dp = EmcCluster::findPhiDiff(current->phiReal(),clusPhi);

or

 double dt = current->thetaReal(Eclus) - clusTheta;
 double dp = EmcCluster::findPhiDiff(current->phiReal(Eclus),clusPhi);

 depending on which method was used to reconstruct the cluster center

5) For the depth method – the 2.6mrad theta correction should not be applied
 not done yet because of problems compiling EmcCalib
Bump - Track matching

Each curve shows the method performance for different significance level requirements.

* Default trk-match method – surface
O Default trk-match method – depth

In development:
- x Doca trk-match method – depth
- ▼ Estimated centr. trk-match method – depth

- Default method does worse when given a point at a depth
- Estimated centroid Method:
 - not very good for low mom. tracks (expl. - next page)
 - provides very clean sample, but at low efficiency
 (min. ionizing pions are matched to their bumps very well)
Estimated Centroid Trk match method

• Description
 - get all Emc intersections of the track
 - make estimated cluster consisting of all intersected crystals
 - to each crystal ascribe energy proportional to the track path length in it
 - reconstruct the estimated cluster’s centroid using E-dep method assuming Eclus = E of the bump the track is being matched to
 - significance level of the match – based on 3D distance between estimated centroid and the bump centroid

• Performance
 - for muons and minimum ionizing pions – estimated cluster centroid is very close to the bump’s centroid, except for low momentum tracks

• Low momentum tracks problem
 - energy loss in the calorimeter constitutes a large fraction of the initial energy, increase in curvature should be taken into account when getting track intersections
Pi0 invariant mass

Single Pi0 0-5GeV, \(z = -1 \) to 0 cm

- Loop over BtaCandidates in CalorNeutral list
- Undo 2.6 mrad theta correction for Depth method
- Similar resolution

V. Koptchev Umass - Amherst