Resolution studies using $e^+e^- \rightarrow \gamma\gamma$ events

Kim Hojeong
Department of Physics
UT Austin
Kinematics in CM frame

* indicates CM frame

Calculated energy of photon in Lab frame:
\[E_{\text{calc}} = \gamma(E_{CM}/2)(1 + \beta \cos \theta_1^*) \]

\[dE/E = (E_{\text{meas}} - E_{\text{calc}})/E_{\text{calc}} \]
Analysis

- Data: taken in January, 2002
- Require to pass L3 $e^+e^- \rightarrow \gamma\gamma$ trigger
- Select 2 highest energy photons
- Cut: Maximum acollinearity = 0.03 rad
- Study energy resolution
 - As function of θ_{Lab}
 - As function of ϕ
- Fit using: Crystal Ball function
 - Starting points from gaussian fit around peak
Energy resolution vs. θ_{Lab}
Energy resolution for low θ_{Lab}
Example: Best fit, Worst fit

- **Bin 11:** $\theta_\text{Lab} = 0.768367 - 0.810204$
 - $\text{Chi2}/\text{ndf} = 96.83 / 78$
 - $\text{Mean} = 0.01684 \pm 0.0004719$
 - $\text{Width} = 0.01602 \pm 0.0003221$
 - $\text{Norm} = 713.3 \pm 11.79$
 - $\text{CBcutoff} = 0.622 \pm 0.02726$
 - $\text{CBpower} = 4.118 \pm 0.2939$

- **Bin 1:** $\theta_\text{Lab} = 0.350000 - 0.391837$
 - $\text{Chi2}/\text{ndf} = 1760 / 92$
 - $\text{Mean} = 0.02049 \pm 0.000338$
 - $\text{Width} = 0.03048 \pm 0.0002593$
 - $\text{Norm} = 1082 \pm 10.89$
 - $\text{CBcutoff} = 1.064 \pm 0.02604$
 - $\text{CBpower} = 1.987 \pm 0.0899$
\(\chi^2 \) Probability

\(\chi^2/\text{ndf} \) bad in general.

Crystal ball function seems not be the optimal model.
Mean vs. θ_{Lab}
FWHM/2.354 vs. θ_{Lab}

Is there a trend or a step?
Mean vs. ϕ

No obvious ϕ dependence.
FWHM/2.354 vs. ϕ

No obvious ϕ dependence.
Summary

- Energy resolution is very poor for the innermost endcap area.
- Crystal Ball function is not optimal parameterization of energy resolution.
- Mean might depend on θ_{Lab}.
- FWHM/2.354 may depend on types of amplifiers. (high gain, low gain)
- No obvious dependency on ϕ.