Preshower Status

Brad Wray
The University of Texas at Austin
August 13, 2008
Energy Correction

• Previously
 – $E_{\text{loss}} = E_{\text{raw}} - E_{\text{true}}$
 – $E_{\text{corr}} = E_{\text{loss,nonPre}} - E_{\text{loss,pre}}$

• Use E_{raw} instead of E_{calib} because, in some sense, the calibration accounts for preshowers
 – Preshower effects should be more apparent in the quantity $E_{\text{raw}} - E_{\text{true}}$ than in $E_{\text{calib}} - E_{\text{true}}$
Energy Correction

• Would like to correct the energy using E_{raw} then apply the calibration

 $$E_{\text{corrected}} = E_{\text{raw}} + E_{\text{corr}}$$

• What we will actually use is

 $$E_{\text{corrected}} = E_{\text{calib}} + E_{\text{corr}}$$

• Should we use

 $$E_{\text{loss}} = E_{\text{raw}} - E_{\text{true}} \quad \text{or} \quad E_{\text{loss}} = E_{\text{calib}} - E_{\text{true}}$$
BBbar MC \(E_{\text{raw}} \) and \(E_{\text{calib}} \) equivalent
BBbar MC

E_{calib} gives better correction
BBbar MC

Mean and peak equivalent for theta correction
Mean better for nHits & theta correction
BBbar MC
nHits & theta gives better correction
BBbar MC

E_{raw} and E_{calib} equivalent
BBbar MC

E_{calib} gives better correction
BBbar MC

Mean and peak equivalent for theta correction

Mean better for nHits & theta correction
BBbar MC nHits & theta gives better correction
MMG MC

E_{raw} and E_{calib} equivalent
MMG MC \(E_{\text{calib}}\) gives better correction for peak, equivalent for mean
MMG MC

Mean and peak equivalent
MMG MC

nHits & theta gives better correction
MMG MC

E_{raw} and E_{calib} equivalent
E_{calib} gives better correction for peak, equivalent for mean
MMG MC Mean and peak equivalent
MMG MC

nHits & theta gives better correction
Conclusions

• Theta Correction equivalent for E_{raw} and E_{calib} (for both peaks and means)
 – Mean and peak approximately equivalent

• nHits & Theta Correction better for E_{calib} than E_{raw} (for both peaks and means)
 – Mean better than peak

• nHits & Theta Correction appears better than Theta Correction

• nHits & Theta Correction using means and E_{calib} appears to be the best correction