Preshower Update

Brad Wray
The University of Texas at Austin
July 2, 2008
From last time…

• TMVA MLP (neural network) used to separate preshowers from non-preshowlers
 – Train using 9 variables (lat, absZer42, absZer20, secondMomentTP, nCrystals, nHits, fitFailed, s1s9, s9s25)

• Energy loss determined from theta
 \(E_{\text{loss}} \sim 1/\sin \theta\)
 – Use profiles of \(E_{\text{loss}}\) vs theta scatter plot to determine \(E_{\text{loss}}\) for a given theta bin
 – Can use means of profiles or fit to \(1/\sin \theta\) as means of correction
Energy Correction: Theta Correction

- Use MC to determine $E_{\text{loss}} = E_{\text{raw}} - E_{\text{true}}$

- Fit theta profiles with Novosibirsk function

- Difference between MPVs is taken as energy correction, E_{corr}

$E_{\text{corr}} = 0.044$ GeV

48 theta bins

Theta Index 11

Non-Preshower: MVP = -0.008 GeV

Preshower: MVP = -0.052 GeV

$E_{\text{corr}} = 0.044$ GeV

Typical theta bin
Correction: Parameterization vs. Profile Mean

BBbar MC
MC (Truth)

Using $1/\sin\theta$ Parameterization for Correction

BBbar MC

MPV = 132.8 MeV
$\sigma = 5.932\text{MeV}$

MPV = 133.2 MeV
$\sigma = 5.794\text{MeV}$

MPV = 127.3 MeV
$\sigma = 8.201\text{MeV}$

MPV = 133.9 MeV
$\sigma = 7.322\text{MeV}$

Fit peaks with Novosibirsk function + pol6
MC (Truth)

Using Profile Means for Correction

Fit peaks with Novosibirsk function + pol6
MC (MLP)
Using 1/sinθ Parameterization for Correction

Fit peaks with Novosibirsk function + pol6
MC (MLP)

Using Profile Means for Correction

Fit peaks with Novosibirsk function + pol6
Data

Using $1/\sin\theta$ Parameterization for Correction

Fit peaks with Novosibirsk function + pol6
Data

Using Profile Means for Correction

Fit peaks with Novosibirsk function + pol6
Working on...

• Improve preshowers/non-preshower separation (for a given efficiency increase purity)
 – Distance from EMC bump centroid to nearest charged track intersection (available in EmcPreshower but does not seem to be working)
 – Addition of DIRC quantities as inputs to TMVA (Cherenkov angle, Cherenkov angle error, number of bkg Cherenkov photons, chiSqr of ring fit)
 – Split sample into 2-5 energy bins for training and testing (number of events at low energies much larger than at higher energies)
Working on...(DIRC Variables)
Working on…

- Would like to correct on an event-by-event basis
 - Try to create a quantity that is (more) correlated with E_{loss} from variables that are weakly correlated with E_{loss}

\[
Z = \sum_{i} C_i \left(\frac{x_i - x_0}{x_0} \right)
\]

New, more correlated variable

Original variable (lat, absZer20, etc.)

Variable shift (mean, MPV)

Sum over subset of current variables

Coefficient gives correlation