Study of the photon angular resolution of the BaBar EMC

Josef-Stefan Wenzler and Stéphane Willocq
University of Massachusetts, Amherst

Emc meeting
2 June 2004
Outline

1. Short Review
2. Analysis Method
3. Pull plots
1. Short Review

• **Dependencies** of $\sigma_\theta/\sigma_\phi$:
 - **Energy Strong.** Factor of 4
 - $\cos(\theta)$ moderate only in θ. Factor of 1.7
 - x_θ/x_ϕ dep strong. Factor of 2.

• **Bias Correction:**
 - Improved resolution by
 - 6.4% for $1\text{GeV}<\text{Energy}<2\text{GeV}$
 - 19% for $5\text{GeV}<\text{Energy}<5\text{GeV}$

• **Parametrization**:
 - Pull plots: Error 3-4%
 (except endcap)
Res. σ_θ, before and after correction

σ_θ as a function of energy

Significant improvement at high energies

<table>
<thead>
<tr>
<th>Energy Range</th>
<th>BEFORE σ_θ</th>
<th>AFTER σ_θ</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 GeV < E < 6 GeV</td>
<td>2.708 mrad</td>
<td>2.191 mrad</td>
<td>~18.5%</td>
</tr>
<tr>
<td>1 GeV < E < 2 GeV</td>
<td>3.875 mrad</td>
<td>3.626 mrad</td>
<td>~6.4%</td>
</tr>
</tbody>
</table>

$\sigma_\theta(E) = C_1 + \frac{C_2}{E^p}$

Resolution before and after the mean correction:
- Resolution before mean correction
- Resolution after mean correction

Energy in [GeV]
Res. σ_ϕ, before and after correction

σ_ϕ as a function of energy

No significant improvement

Resolution before and after the mean correction:
- Blue line: Resolution before mean correction
- Red line: Resolution after mean correction

$\sigma_\phi(E) = C_1 + \frac{C_2}{E^p}$

Energy in [GeV]
2. Analysis Method

> The 2 Choices:

- **Tails in residuals** → Novosibirsk
 a) 50% tails to the left
 b) 50% tails to the right
 c) Product: symmetric tails

 Need to separate pos. And neg. Xtheta bins.

- Edge, low energy **residuals horrendous**
 → Fit center of distribution to describe most photons
 Shorten Fit range for low E & edge residuals.

> Now study pull plots:

- Only positive \(x_\theta \) values (similar results for \(x_\theta < 0 \))
- **Shortened fit range** for low energies and edges.
2. Analysis Method

Gaussian vs. Novosibirsk fit function
Pull plots in diff. bins of energy average over all $\cos(\theta)$ and pos. xtal face bins.

Only positive X_θ bins
Pull plots in diff. bins of $\cos(\theta)$ averaged over all energies and pos. xtal face bins:
Pull plots in different bins of x_θ averaged over all $\cos(\theta)$ and energy bins:

Only positive X_θ bins
<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
<td>1391892</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.2203</td>
</tr>
<tr>
<td>RMS</td>
<td>1.063</td>
</tr>
<tr>
<td>Underflow</td>
<td>1.538e+04</td>
</tr>
<tr>
<td>Overflow</td>
<td>9860</td>
</tr>
<tr>
<td>Integral</td>
<td>1.367e+06</td>
</tr>
<tr>
<td>χ^2/ndf</td>
<td>1.214e+04 / 30</td>
</tr>
<tr>
<td>Prob</td>
<td>0</td>
</tr>
<tr>
<td>const</td>
<td>1.086e+05 ± 126</td>
</tr>
<tr>
<td>mean</td>
<td>-0.0478 ± 0.0015</td>
</tr>
<tr>
<td>sigma</td>
<td>0.9943 ± 0.0008</td>
</tr>
<tr>
<td>tau</td>
<td>-0.1236 ± 0.0011</td>
</tr>
</tbody>
</table>

Only positive X_θ bins

Histogram of pull plot + theta for all photons + theta.
3. Pull plots

Pull plot Summary:

1. Parametrization works with an error of 3-4%.
2. Exceptions are the last two bins in the endcap.
 a) Here horrendous residuals
 b) Symmetric tails
 c) Wrong bias correction.