Single Crystal Calibration
With Muons
- Problems Understanding dE/dx

Johannes Albrecht
University of Heidelberg
albrecht@physi.uni-heidelberg.de
Bethe Bloch Equation

• Implement Bethe Bloch as in PDG04
 – Including the density effect
 – Shell correction not important for high energies (momentum cut: 2 GeV)
 – Coefficients from PDG and Sternheimer 84

• Test plot to ensure consistency ⇒ correct implementation cross-checked!
Compare BB and Monte Carlo

- Study mumu MC:
 - Energy loss in each theta ring (mean of Landau fit to dE/dx distribution of muons)

- Compare with BB:
 - Difference in slope
 - Offset of the order of 20%

- Where does this effect come from?

![Graph showing energy loss in GeV/cm for different theta indices, comparing Bethe Bloch CsI (TI) dE/dx MC with BB.]
dE/dx dependence of momentum:

- Study dEdx in each ring as function of momentum and compare with BB
- We see the same features as in the last plot

![Graphs showing dE/dx dependence for different momenta](image)
Conclusion

• Bethe Bloch equation does not describe dE/dx for muons as measured in the EMC
 → differences on a 20% level for MC
 → 15% difference observed for DATA

• What are we missing?