Trying to fit source calibration spectra

Johannes Bauer
February 12, 2002

First Thought: Describe analytically

• Describe spectrum with Compton edge function + three Gaussian (6.1 MeV + 1st + 2nd escape peak)

• Cross-section ratio known:
 attenuation due to incoherent scattering (Compton scattering) over attenuation due to pair production

• Correct description for initial interaction

• But not complete: scattered photon can still deposit energy

⇒ No full description
Second Thought:
Use noise run to subtract background

- Noise believed to be
 - electronics noise at low energies ($\lesssim 4$ MeV)
 - cosmic background (visible $\gtrsim 7$ MeV)
- Cosmic rate proportional to live-time
- Noise run:
 Accumulating data without neutron generator

Noise samples:
Algorithm (for each crystal)

- Take noise run right before or after run with NG on
 \[\downarrow \text{noise spectrum} \quad \downarrow \text{signal+background spectrum} \]
- Fit noise spectrum to exponential (electronics noise)
 \[+ \text{constant (cosmics)} \]
- Fit signal+background spectrum at high end to constant (cosmics)
- Scale noise spectrum fit to have same size in high end
- Subtract noise spectrum fit from signal+background fit

\[\Rightarrow \text{Only signal should remain} \]
Example:

Run 183 taken July 1, 2002 1:15am with NG
Run 184 taken July 1, 2002 1:30am without NG

- Fit to noise spectrum (Crate 0 Slot 9 Channel 0):

 (final fit = binned maximum likelihood fit)

 here constant term: 0.33165
• Fit to signal+background spectrum:
 ○ first rough fit to signal+bkgd spectrum
to find bin with exponential 1/1000 of peak
 ○ then fit constant to bins above

Here bin fitting bins 146 to 200
constant term: 1.29086 \Rightarrow scale factor 3.89
Blue: Noise

Red: Signal + Background

Black: Background estimated from Noise

full spectrum

high end only
Everything in one plot:

Pink: Noise (scaled) Red: Signal + Background (original)
Black: Fit to noised (scaled) Blue: Background (Red minus Black)

Looks reasonable
• Similarly high at other crystals (Crate 0 Slot 9 Channel 1):
- Endcap Crate 9 Slot 7 Channel 13:
Endcap Crate 9 Slot 9 Channel 34:

⇒ Appears to be fine
Another set of runs:

Jan 23, 2003: Sum of good parts in Runs 216 to 219
Jan 23, 2003: Run 215 taken without NG \(\sim 3\) minutes

- Crate 0 Slot 9 Channel 0:

![Graphs showing noise and signal-background data](image)

(Algorithm looks for highest local maximum)
Noise spectrum: \[\text{Constant term} = 0.51203 \]

Sig+Bkgd spectrum: \[\text{Fitting bins 154 to 200} \rightarrow \text{Constant term} = 12.681 \]

\[\Rightarrow \text{scale factor 24.8} \]

Subtracting too much!

(If fitting noise spectrum bins 154 to 200 with constant: \[\text{constant term} = 0.361702 \Rightarrow \text{scale factor 35.1} \])
Crate 0 Slot 9 Channel 1:

Also subtracting too much…
Endcap Crate 9 Slot 9 Channel 34:
Endcap Crate 9 Slot 9 Channel 34:
Mixing runs

Jan 23, 2003: Sum of good parts in Runs 216 to 219 (with NG)
Jul 01, 2002: Run 184 noise \(\sim 3\) minutes (without NG)

Not much better...
Conclusion

• First idea not working, but might provide guidance to fitting function
 Matt: 6 MeV MC generator available in BABAR code

• Second idea seems to be working for old run (with NG working well),
 not good for new run b/c scale factor too large

• Why can noise run not predict background?
 ○ Why is background peaked sharper for noise runs?
 ○ Or why are 'more' cosmics in run with NG on?
 ○ Are they really cosmics? (Matt: some higher E decays from 16N)

• Another way to subtract background?
 ○ How about using only shape of noise?
 * Use this shape + flat Compton distribution at low energy
 + Gaussian peaks as fit function?
 * Letting bkgd normalization float as one fit parameter?
 (similar to presentation Nov 13, 2002,
 but no good signal function at that time)

⇒ Needs more work...